Option Replication and Model Risk

Ryan Williams

March 7, 2007

Black-Scholes Problematic Assumptions

- Zero Transaction costs
- Continuous hedging
- Simplistic stochastic process
 - deterministic and known volatility
 - existence of volatility Skew and Smile

Transaction Costs

- Black-Scholes equation with an effective volatility (Leland 1985)
- $%TC \propto$ the number of shares transacted

•
$$E[TC] = \frac{k}{\sigma\sqrt{2\pi\Delta t}} \frac{\partial C}{\partial \sigma}$$

- continuous hedging is too expensive
- vast literature mostly in GBM framework and primarily without regard to other options

Discrete Hedging Error over Δt

•
$$\frac{\Delta S}{S} = \mu \Delta t + \sigma \epsilon \sqrt{\Delta t}$$
 and $\Pi = C - \frac{\partial C}{\partial S}S$

•
$$\Delta \Pi \approx \frac{1}{2} \frac{\partial^2 C}{\partial S^2} S^2 \sigma^2 (\epsilon^2 - 1) \Delta t + \mathcal{O} \Delta t^{3/2}$$
 where $\epsilon \sim N(0,1)$

- Chi-Square Distribution of order 1
- discrete hedging presents risk skewed against the seller

Discrete Hedging Error over ${\cal T}$

• $n(=\frac{T}{\Delta t})$ Chi-squares of order $1 \sim$ Chi-square of order n. Normal as $n \to \infty$

•
$$\sqrt{E[\Pi^2]} = \sqrt{\frac{\pi \Delta t}{4T}} \sigma \frac{\partial C}{\partial \sigma}$$
 (Kamal and Derman)

- attributed to discrete sampling error of continuous process
- One could perform mean-variance optimization to find optimal Δt if k and σ are known

 σ estimation assuming no other options to hedge

- probe historical distributions and statistical relationships
- $E[\sigma] = \bar{\sigma} \operatorname{Var}[\sigma] = \kappa^2$ which implies $\sqrt{E[\Pi^2]} \approx \kappa \frac{\partial C}{\partial \sigma}$

• in most cases
$$\kappa >> \sqrt{\frac{\pi \Delta t}{4T}} \sigma > \frac{k}{\sigma \sqrt{2\pi \Delta t}}$$

- GBM assumption introduces the most risk
- motivation for more descriptive processes

Stochastic Volatility

- Designed to account for volatility fluctuations, volatility clustering and correlations with the underlying. Incompleteness due to additional source of randomness.
- Heston Model

$$dS = \mu S dt + \sqrt{v} S dW_1$$

$$dv = -\lambda (v - \bar{v}) dt + \eta \sqrt{v} dW_2$$

$$\rho dt = \langle dW_1 dW_2 \rangle$$

- Differential equation formulation assumes $\Pi = C \delta_1 V \delta_2 S$ where V is another volatility dependent instrument
- What if there is no V ($\delta_1 = 0$)? What is δ_2 and what does the discrete hedging risk look like?

Heston hedging error

- Risk minimizing hedge sets $\delta_2 = \frac{\partial C}{\partial S} + \frac{\rho \eta}{S} \frac{\partial C}{\partial v}$
- $\Delta \Pi \approx \sqrt{v\Delta t} \eta \sqrt{1 \rho^2} \frac{\partial C}{\partial v} \epsilon_2 + \mathcal{O} \Delta t (B-S \text{ terms})$

•
$$\sqrt{E[\Pi^2]} \propto \eta \sqrt{T(1-\rho^2)} \frac{\partial C}{\partial \sigma}$$

- Note the connection to σ estimation in B-S framework: uncertainty in vol, hedge-ability term, generally greater in magnitude
- What about leptokurtic and skewed returns?

Levy Processes

- Adding jumps allows a higher moments in return distribution
- Discontinuities cause market incompleteness
- Levy Process X_t has characteristic function $\Phi_t(u) = E[e^{iuX_t}] = e^{t\psi(u)}$

•
$$\psi(u) = -\frac{1}{2}\sigma^2 u^2 + i\gamma u + \int (e^{iux} - 1 - iux \mathbf{1}_{|x| \le 1})\nu(dx)$$

- The Levy measure, ν , allows much rich and interesting behavior
- Brownian motion ($\nu = 0$), Merton jump diffusion, variance gamma, CGMY, NIG are all examples of Levy Processes

Hedging under a Levy Process

- Delta hedge with jump risk diversified through the portfolio (Merton)
- Utility Maximization
 - Global mean-variance optimization popular due to tractability
- Local MV and Super-hedging are not discussed below

Option Pricing using Fourier Transforms

• Knowledge of risk-neutral characteristic function $\Phi(u)$ allows integral transform representation of European style options

•
$$C(S, K, T) = S - \sqrt{SK} \frac{1}{\pi} \int_0^\infty \frac{du}{u^2 + 1/4} \operatorname{Re}[e^{-iuk} \Phi_T(u - i/2)]$$

- \bullet Stochastic vol models and Levy processes have analytical Φ
- quadrature or FFT methods for efficient computation

Implied Volatility vs. logStrike

Call Delta vs. log(Strike/UnderPrice)

HedgingPL Distribution

Hedging stats over Δt

	-	-		
stat	Merton(red)	B-S(blue)	MV(purple)	Hest(green)
StdDev/ C_0	4.95%	3.77%	2.70%	2.23%
$P(< -C_0/4)$	0.123%	0.115%	0.063%	0.010%
$P(< -C_0)$	0.105%	0.088%	0.048%	0.004%
$P(< -2C_0)$	0.015%	0.004%	0.000%	0.000%

Conclusions and Further topics

- Risks assuming perturbed GBM underestimate real risks
- Hedge strategy/ratio is model dependent. You must have faith in your stochastic process.
- Global MV (local MV too) and partial derivative hedge under Levy process all have their own idiosyncracies
- Jumps with stochastic vol and stochastic Levy processes offer better market description but more parameters
- Many models can reasonably fit option prices and (separately) historical return distributions. Model comparisons probing replication error are more practical