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We have priced contingent claims using risk-

neutral probability (martingales, change of mea-

sure, etc.).

We may also use arbitrage arguments. Arbitrage

is simply (risk-free) free money. And an arbi-

trage argument says that there should be no

(risk-free) free money.

How do we ’use arbitrage’ to price a claim?

We try to replicate the claim with securities

(stocks and bonds).
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A contingent claim, f , is replicable if we can

construct a portfolio Π such that

• The values of Π and f are the same under

every circumstance.

• Π is self financing. As time goes on, we

only shift money around within the portfo-

lio, we don’t put anymore in (or take any

out).

We will call Π the replicating portfolio (of f).
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Why does arbitrage work? Let’s do an example

with gold.

Suppose the price of gold today is $200 and

the risk-free interest rate is 3%.

You don’t want gold today (because it’s out

of fashion), but you do want gold in 6 months

(when, of course, it will be all the rage).

You therefore buy a forward contract.

How much should you pay for this wonderful

opportunity?
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Suppose the forward contract costs $250. You

should then go to the bank, and borrow $200.

Use this money to buy some gold right now.

Then short (sell) the forward (to a sucker).

In six months, what happens?

• You sell your gold for $250

• You pay back your loan with your newly

received funds

• You are left with $250-$200e.5(.03)=$46.97

Which is a lot of free money.
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What if the forward contract, F0, is selling for

less than $200e.5(.03)? Well, you have to be

able to sell an ounce of gold today. (We’ll

later assume we can always short things).

Assuming you have gold lying around, you’ll

(because you know the trick) sell your gold

today and get $200. Next, you put this $200

in the bank. Finally, you go long (buy) the

forward contract.

So what happens at the end of 6 months?

• Take your money, $200e.5(.03) out of the

bank.

• Use it to buy your gold back for $F0.

You have your gold back, and $(200e.5(.03)-

F0). Since this number is positive, you are

very happy.
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Arbitrage therefore sets the price of the for-

ward contract to be $200e.5(.03).

This is true of any forward contract on an asset

with no storage costs and which does not pay

dividends.

Even more generally, any replicable claim will

have the same price as its replicating portfolio.

6



Forward contracts are simple(!) to price. This

is due in large part to the linearity of the pay-

offs at maturity.

Options are not so easy. The payoff at matu-

rity has a kink. This nonlinearity is a bugger.

So what do we do about it?

• Model stocks using Black-Scholes (which

is equivalent to the binary tree model in a

certain sense).

• Use this model to come up with a formula

for what the price of an option should be.

• Then, as is par for the course, we’ll com-

plain about the shortcomings of the Black-

Scholes model.

7



The Black-Scholes Model assumes that a stock

S follows the process

dS

S
= µdt + σdW. (1)

Where W is a Brownian Motion.

8



The assumptions in the Black-Scholes (BS)

model (for us...so far) are

• The stock price follows (1).

• There are no transaction costs (!) or taxes

(!!).

• Short selling of securities is allowed, with

no restrictions on use of proceeds (!!!).

• The stock does not pay a dividend.

• The market is complete, and there are no

arbitrage opportunities.

• Trading is continuous (!).

• The risk-free interest rate is fixed.
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There really aren’t generally accepted superior

models to the BS model (yet). It’s just that:

• There are transaction costs to consider and

(gasp) taxes.

• There are restrictions on use of proceeds

for short sales.

• There are nonreplicable contingent claims.

We can never get rid of all the risk.

• Trading is not continuous.
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We would like to find a price for a contingent

claim. For a derivative f with underlying S

(following (1))

df =

(

∂f

∂S
µ +

∂f

∂t
+

1

2

∂2f

∂S2
σ2

)

dt +
∂f

∂S
σdW (2)

We want to construct a portfolio Π that hedges

away the risk.
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We set Π to have

−1 : derivative

∆ : shares

where ∆ = ∂f
∂S .

We get that for a small change in time, δt, the

corresponding change in Π is given

δΠ = −δf + ∆δS
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From the discrete versions of (1) and (2), we

get

δΠ =

(

−
∂f

∂t
−

1

2

∂2f

∂S2
σ2

)

δt. (3)

But this implies the change in the portfolio is

riskless (no uncertainty), and so by arbitrage,

we must have

δΠ = rΠδt
(

−
∂f

∂t
−

1

2

∂2f

∂S2
σ2

)

δt = r(−f + ∆S)δt

(

∂f

∂t
+

1

2

∂2f

∂S2
σ2 + r∆S

)

δt = rfδt

∂f

∂t
+

1

2

∂2f

∂S2
σ2 + r∆S = rf (4)

The pde in (4) is the Black-Scholes-Merton

differential equation.
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By using only (1) and arbitrage, we must have

that

• Any function f that satisfies (4) is the price

of some theoretical contingent claim.

• Every contingent claim must satisfy (4).
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When

∂f

∂t
+

1

2

∂2f

∂S2
σ2 + r

∂f

∂S
S = rf

is solved with boundary conditions depicting a

European call option with strike K,

f(S, T ) = max(S − K,0),

we get the Black-Scholes price of the option.
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The BS price of a European call, c, (on a stock

with no dividend) is

c = c(K, r, St, t, T, σ) = StΦ(d1) − Ke−r(T−t)Φ(d2)(5)

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

(6)

Φ is the cumulative distribution function of

standard normal random variable (N(0,1))
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Here are a few properties of the BS price of c

(a benchmark test, really)

• We would expect that if St is very large,

c should be priced like a forward contract

(why?).

c ≈ St − Ke−r(T−t)

• When σ is extremely small, we would ex-

pect that the payoff would be

c ≈ max(Ste
r(T−t) − K,0) (7)

(why?).
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We also have

• c is an increasing function of σ.

• ∂c
∂S = N(d1).

From the last point, we can estimate the ∆ to

use in the replicating portfolio of c.
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Prices are not set by the BS options price.

Rather, markets set prices.

We may therefore go to the market to observe

K, r, S0, T . We can’t observe σ.

We solve for σ using (5). The number we get

is called the implied volatility.
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If we check market data for different strike

prices, K, with all else being equal, we get

different implied volatilities.

In fact we get what is called a volatility smile,

or a volatility skew depending on the shape.

We have assumed that σ is some intrinsic prop-

erty of the underlying. It shouldn’t vary with

K.
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The following data are from the website

http://www.fenews.comfen37/teach notes/

teaching notes.htm

Below are the prices for (European) call and

put options on the QQQ (a NASDAQ 100

composite) for January 9, 2004. Expiration

dates are January 16, and February 20.

Calls Puts
Strike January February January February

34 3.9 4.1 0.05 0.25
35 2.8 3.2 0.05 0.35
36 1.85 2.35 0.1 0.55
37 1 1.65 0.25 0.85
38 0.35 1.05 0.6 1.25
39 0.1 0.6 1.4 1.9
40 0.05 0.35 2.35 2.6
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As we have seen, BS depends on (K, r, St, t, T, q, σ),

and the only unobservable quantity is σ. In

the present case, for the February options, the

data give

S0 = 37.73 (the price at closing Jan. 9, 2004)

T − t = 42/365 = .1151

r = .83

q = .18

Which gives

Implied Volatility
February Call February Put

0.323 0.29
0.2592 0.2493
0.2455 0.2369
0.2279 0.2198
0.2156 0.2279
0.2181 0.2206
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Graphically, plotting strike prices on the x-axis

and implied volatility on the y-axis, we have:
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Suppose the volatility smile we observe looked

more like:
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We would likely think that the market was

overpricing the call for one of the strike prices

(which one?), and take a position.
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Volatility smiles also occur with commodities.

Below are examples of smiles for both calls and

puts for crude oil.
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So σ not only varies with the strike price, but

also depends on whether we are pricing a call

or a put.

Below are the volatility smiles of the call and

put above in one plot.
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As a final kicker, implied volatility varies with

the expiration of the option. We may therefore

plot a volatility surface.
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Forwards are not generally as easy as the gold

example made it seem either. Below is the

forward curve for crude oil.
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Remember risk-neutral measures? We may ob-

tain the implied risk-neutral distribution from

a volatility smile.

If g is the risk-neutral pdf of ST , we have for

fixed interest rate, r, that

c = e−r(T−t)
∫ ∞

ST=K
(ST − K)g(ST )dST

Taking partials with respect to K twice, we get

∂2c

∂K2
= e−r(T−t)g(K)

So that our risk-neutral probability may be writ-

ten

g(K) = er(T−t) ∂2c

∂K2
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We may approximate the risk-neutral probabil-

ity density function of ST by

g(K) ≈ er(T−t)c1 + c3 − 2c2
δ2

where c1, c2, c3 are the observed call prices for

strikes K − δ, K, and K + δ respectively.

This is theoretically nice, but usually market

data is not sufficiently rich to obtain good ap-

proximations.
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In the end, BS is used to show that BS is,

well...lacking. We could enrich the model. Some

prime suggestions are

• Assume volatility is level-dependent. That

is, let dS = µ(St, t)dt + σ(St, t)dW .

• Assume volatility is stochastic.

• Assume volatility is uncertain, and optimize

accordingly.

• Model dr = (θ − αrt)dt + σdW̃ .
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