MATH 1271 Spring 2013, Midterm #1 Handout date: Thursday 21 February 2013

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) Compute $\lim_{x\to 0} \left[\frac{(3x^2-8x^4)(\cos x)}{4x(\sin x)} \right]$. Circle one of the following answers:

- (a) 3/4
- (b) -2
- (c) 0
- (d) This limit does not exist.
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Compute $\lim_{x\to-\infty}\left[\frac{x^3+2x^2-4x}{2x^4-7x^2}\right]$ Circle one of the following answers:

- (a) 4/7
- (b) -4/7
- (c) 0
- (d) ∞
- (e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) (no partial credit) A line passes through (5,40) and (3,80). Find its slope. Circle one of the following answers:

- (a) 40
- (b) 10
- (c) 0
- (d) -10
- (e) NONE OF THE ABOVE

	(a) 2.995
	(b) 3.005
	(c) 3
	(d) -2.995
	(e) NONE OF THE ABOVE
	(5 pts) (no partial credit) Which is the intuitive definition of $\lim_{x\to 4} (h(x)) = 7$? Circle one the following answers:
	(a) If x is close to 4, but not equal to 4, then $h(x)$ is close to 7, but not equal to 7.
	(b) If $h(x)$ is close to 4, then x is close to 7.
	(c) If x is close to 4, but not equal to 4, then $h(x)$ is close to 7.
	(d) If $h(x)$ is close to 7, but not equal to 7, then x is close to 4, but less than 4.
	(e) NONE OF THE ABOVE
F.	(5 pts) (no partial credit) Compute $\lim_{t\to 4} \left[\frac{t^2-t-12}{t-4}\right]$. Circle one of the following swers:
	(a) 7
	(b) 8
	(c) 9
	(d) 10
	(e) NONE OF THE ABOVE

D. (5 pts) (no partial credit) What is the largest number x such that $|x-3| \le 0.005$?

II. True or false (no partial credit):

- a. (5 pts) Let f be any algebraic function. If $\lim_{x\to\infty} f(x) = 1/3$, then $\lim_{x\to-\infty} f(x) = 1/3$.
- b. (5 pts) Let f be any function. If $\lim_{x\to 3} f(x)$ exists, then f is continuous at 3.
- c. (5 pts) Let f(x) = |x|. Then f(x) is differentiable at x = 0.
- d. (5 pts) Let f be the restriction of sin to $[-\pi/2,0]$. Then f is a one-to-one function.
- e. (5 pts) $\lim_{x\to 0} \frac{\sin^2 x}{x^2} = 1$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION C

- I. A,B,C
- I. D,E,F
- II. a,b,c,d,e
- III. 1
- III. 2
- III. 3
- III. 4

- III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.
- 1. (10 pts) Find all horizontal asymptotes to

$$y = \frac{\sqrt[4]{x^4 + 2x + 5}}{7x - 3}.$$

(NOTE: A horizontal asymptote is a line; your answers should be equations of lines, ${\bf NOT}$ numbers.)

2. (15 pts) Compute $\lim_{n\to\infty} \left(1 + \frac{63}{n}\right)^n$.

3. (10 pts) Compute $\lim_{x \to -\infty} \left[\frac{2x^2 + \cos^2 x}{5x^2 + 2} \right]$.

4. (10 pts) Let $f(x) = (x+2)^5(x-1)^6(x-4)^8$. Find all of the maximum intervals of positivity and negativity for f.