PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Let f be a function such that $f^{\prime}(x)=4 e^{4 x}$. Suppose, also, that $f(0)=1$. Which of the following is an equation of the tangent line to the graph of f at $(0,1)$. Circle one of the following answers:
(a) $y=4(x-1)$
(b) $y=1+4 x$
(c) $y-1=4 e^{4 x} x$
(d) $y=4 e^{4 x}(x-1)$
(e) NONE OF THE ABOVE
B. (5 pts) (no partial credit) Suppose $f^{\prime}(x)=(x-1)^{2}(x-2)(x-3)^{2}$. Which of the following is a maximal interval of increase for f ? Circle one of the following answers:
(a) $[2, \infty)$
(b) $(-2, \infty)$
(c) $[1, \infty)$
(d) $(-\infty, 1]$
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) The Quotient Rule says that $(f / g)^{\prime}$ is equal to what? Circle one of the following answers:
(a) f^{\prime} / g^{\prime}
(b) g^{\prime} / f^{\prime}
(c) $\left(g f^{\prime}-f g^{\prime}\right) / g^{2}$
(d) $\left(f g^{\prime}-g f^{\prime}\right) / g^{2}$
(e) NONE OF THE ABOVE
D. $(5 \mathrm{pts})$ (no partial credit) Compute $\frac{d}{d x}[\ln |(2 x+1)(3 x-4)|]$. Circle one of the following answers:
(a) $\frac{2}{2 x+1}+\frac{3}{3 x-4}$
(b) $\left|\frac{2}{2 x+1}+\frac{3}{3 x-4}\right|$
(c) $\frac{6}{(2 x+1)(3 x+4)}$
(d) $\left|\frac{6}{(2 x+1)(3 x+4)}\right|$
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) Compute $[d / d x]\left[\sin ^{2}(x y)\right]$. Circle one of the following answers:
(a) $2[\sin (x y)][\cos (x y)]$
(b) $\left[\cos ^{2}(x y)\right]\left[y+x y^{\prime}\right]$
(c) $2[\sin (x y)]\left[y+x y^{\prime}\right]$
(d) $2[\sin (x y)]\left[\cos \left(y+x y^{\prime}\right)\right]$
(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow \infty}\left(2 x^{2}+4 x-3\right) e^{-x}$. Circle one of the following answers:
(a) 2
(b) -3
(c) ∞
(d) 0
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. (5 pts) Let u be any expression of x. Then $(d / d x)\left(e^{u}\right)=e^{u}$.
b. (5 pts) If f is increasing on an interval I, then $f^{\prime}>0$ on I.
c. (5 pts) Let f and g be any two functions such that $\lim _{x \rightarrow a}[f(x)]=\infty$ and $\lim _{x \rightarrow a}[g(x)]=\infty$. Then $\lim _{x \rightarrow a}[(f(x))-(g(x))]=0$.
d. (5 pts) Let g be any function such that $\lim _{x \rightarrow \infty}[g(x)]=\infty$. Then $\lim _{x \rightarrow \infty}\left[(1 / x)^{g(x)}\right]=0$.
e. (5 pts) Let f and g be any two functions such that $\lim _{x \rightarrow 5} f(x)=1$ and $\lim _{x \rightarrow 5} g(x)=0$.

Then $\lim _{x \rightarrow 5} \frac{f(x)}{g(x)}=\infty$.

VERSION A

I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. D,E,F
II. a,b,c,d,e
III. 1,2.
III. 3.
III. 4.
III. 5. a,b,c
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. $(5 \mathrm{pts})$ Compute $\frac{d}{d x}\left[\frac{e^{-x^{4}}}{4+\tan \left(x^{2}\right)}\right]$. (Here $e^{-x^{4}}$ means $e^{\left(-x^{4}\right)}$.)
2. (5 pts) Compute $\frac{d}{d x}\left[(2-\cos x)^{4+x}\right]$.
3. (10 pts) Find an equation for the tangent line to $7 x^{3}-5 x y+y^{2}=4 x-y$ at $(1,3)$.
4. (10 pts) Compute $\lim _{x \rightarrow 0}\left(e^{x}+\sin x\right)^{5 / x}$.
5. Let $y=x^{3}$. Then $\triangle y=a x^{2}(\triangle x)+b x(\triangle x)^{2}+c(\triangle x)^{3}$, for some real numbers a, b, c. a. (5 pts) Compute a, b and c.
b. (5 pts) Assuming $\triangle x \neq 0$, compute $\frac{\triangle y}{\triangle x}$.
c. $(5 \mathrm{pts})$ Compute $\lim _{\triangle x \rightarrow 0} \frac{\triangle y}{\Delta x}$.
