CALCULUS

The limit game and the exact definition of a limit OLD2

O150-1. For the function g graphed below, what is the largest number δ such that

$$0 < |t - 4| < \delta \implies |(g(t)) - 5| < 0.6$$
 ?

0150-2. Let f(x) = 3x - 4.

Show a graph of y = f(x) that includes the points (1,-1), (2,2) and (3,5).

Find the largest number δ such that $|x-2| < \delta \implies |(f(x)) - 2| < 0.9$.

Oldon Oldon Show a graph of
$$y=g(x)$$
 that includes the points $(1,-1)$ and $(3,5)$.

Find the largest number δ such that $0 < |x-2| < \delta \implies |(g(x)) - 2| < 0.9$.

- 0150-4. In shop class, you are asked to build a square sheet of metal of area 400 square inches.
- The area can be slightly off, but must be between 399 and 401 square inches.
- Say you have access to a machine that will punch out a perfect square, and the side length (in inches) is controlled by a dial.
- How close to 20 must you set the dial to get the area to be in the specified range?
- Give your answer to five decimal places.

0150-5. Prove that
$$\lim_{x\to 6} 4x = 24$$
.

Your writeup should read:

Given
$$\varepsilon > 0$$
.

Let
$$\delta = \cdots$$
.

Assume
$$0 < |x - 6| < \delta$$
.

Then
$$|4x-24|<4\delta$$
. •-----penultimate sentence

Then
$$|4x-24|<\varepsilon$$
.

←----last sentence

All you need do is fill in the ellipsis (\cdots) with a carefully chosen expression of ε .

Hint: The last sentence in the writeup clearly follows from the penultimate sentence if $4\delta = \varepsilon$.