CALCULUS

The limit game and
the exact definition of a limit
OLD

0150-1. For the function f graphed below, what is the largest number δ such that

$$
0<|x-2|<\delta \quad \Rightarrow \quad|(f(x))-1|<0.3
$$

0150-2. Let $f(x)=2 x-1$.
Show a graph of $y=f(x)$ that includes the points $(2,3),(3,5)$ and $(4,7)$.
Find the largest number δ such that

$$
|x-3|<\delta \quad \Rightarrow \quad|(f(x))-5|<1
$$

0150-3. Let $g(x)=[2 x-1]\left[\frac{x-3}{x-3}\right]$.
Show a graph of $y=g(x)$ that includes the points $(2,3)$ and $(4,7)$.

Find the largest number δ such that

$$
0<|x-3|<\delta \quad \Rightarrow \quad|(g(x))-5|<1
$$

0150-4. In shop class, you are asked to build a square sheet of metal of area

100 square inches.
The area can be slightly off, but must be between 99 and 101 square inches.

Say you have access to a machine that will punch out a perfect square, and the side length (in inches) is controlled by a dial.

How close to 10 must you set the dial to get the area to be in the specified range?
Give your answer to five decimal places.

O150-5. Prove that $\lim _{x \rightarrow 3} 7 x=21$
Your writeup should read:
Given $\varepsilon>0$.
Let $\delta=\cdots$.
Assume $0<|x-3|<\delta$.

$$
\begin{aligned}
& \text { Then }|7 x-21|<7 \delta \text {. } \\
& \text { Then }|7 x-21|<\varepsilon \text {. }
\end{aligned}
$$

All you need do is fill in the ellipsis ($\cdot \cdot$) with a carefully chosen expression of ε.
Hint: The last sentence in the writeup clearly follows from the penultimate sentence

$$
\text { if } 7 \delta=\varepsilon
$$

