CALCULUS Implicit differentiation OLD

- 0430-1.Let an expression y of x be given, implicitly, by the formula $xy 5x 8x^3 = 7$.
 - a. Find dy/dx by implicit differentiation.
- b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

- O430-2.Let an expression y of x be given, implicitly, by the formula $x^3 + y^3 = 1$.
 - a. Find dy/dx by implicit differentiation.
- b. Solve for y as an explicit expression of x.
- c. Differentiate your answer to Part b, writing dy/dx as an explicit expression of x.
- d. Substitute your answer for Part b into every y appearing in your answer to Part a, writing dy/dx as an explicit expression of x.
- e. Verify that your answers to Part c and Part d are the same.

O430-3. Let an expression y of x be given, implicitly, by the formula $xe^y-\cos y+2e^x\tan y=3.$ Find dy/dx by implicit differentiation.

0430-4. Let an expression y of x be given, implicitly, by the formula $\sin y = 2x - y.$ Find dy/dx by implicit differentiation.

O430-5. Let an expression y of x be given, implicitly, by the formula $x^3 + y^3 = 9$. Find an equation of the tangent li

Find an equation of the tangent line to the graph of this equation at the point (1,2).

O430-6. Let an expression y of x be given, implicitly, by the formula $y^2 = 3x^4 - 2x^2.$ Find an equation of the tangent line to the graph of this equation at the point (1,1).

O430-7. Let an expression y of x be given, implicitly, by the formula $3x^5-y^5=8+xy.$ Find d^2y/dx^2 by implicit differentiation.

0430-8. Let an expression
$$y$$
 of x be given, implicitly, by the formula
$$\sqrt{3}x + y^7 = 4 + xy.$$
 Find d^2y/dx^2 by implicit differentiation.

O430-9. For every $a \in \mathbb{R}$, for every b > 0, let G_a be graph of the equation $y = ax^5$ and let H_b be graph of the equation $x^2 + 5y^2 = b$.

both on G_1 and on H_6 .

Show that the tangent lines to G_1 and H_6 at p are perpendicular.

b. Let a and b be any two real numbers, with b>0. Let q be any point which lies

a. Let p be the point (1,1), which lies

both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.

Challenge problem (not assigned):

For every $a, b \in \mathbb{R}$, let G_a be graph of x - 2y = 2axy and let H_b be graph of $x^3 + 2y^3 = b$.

a.Let p be the point (2,1), which lies both on G_0 and on H_{10} . Show that the tangent lines to G_0 and H_{10}

at p are perpendicular.

b. Let a and b be any two real numbers.

Let q be any point which lies both on G_a and on H_b .

Show that the tangent lines to G_a and H_b at q are perpendicular.