MATH 4281 HOMEWORK 10 (SOLUTIONS)

17. RINGS: DEFINITIONS AND ELEMENTARY PROPERTIES

J3. Prove that in a commutative ring R with unity, a divisor of zero cannot be invertible.

Proof. Let $r \in R$ be a zero divisor, and suppose r is invertible. Then there exists $s \in R$ such that rs = 1. Since r is a zero divisor, there exists a nonzero element $t \in R$ such that tr = 0. Then multiplying the equation rs = 1 on the left by t, we have $trs = t \cdot 1 = t$, which implies $0 \cdot s = t$ so 0 = t, a contradiction. \Box

J4. Suppose $ab \neq 0$ in a commutative ring R. If either a or b is a divisor of zero, so is ab.

Proof. Without loss of generality, suppose $a \in R$ is a zero divisor, then there exists a nonzero element $c \in R$ such that ac = ca = 0. Multiplying this by b and use the associativity we can get $c(ab) = (ca)b = 0 \cdot b = 0$. By assumption $ab \neq 0$, so we must have ab is a zero divisor of R.

J5. Suppose a is neither 0 nor a divisor of zero. If ab = ac, then b = c.

Proof. Let R be the commutative ring. Suppose ab = ac, i.e., ab - ac = 0. Then by distributivity, a(b-c) = 0. Since $a \neq 0$, and a is not a zero divisor, we must have b - c = 0. Hence b = c.

J6. $A \times B$ always has divisors of zero.

Proof. Let $a \in A$ and $b \in B$ be any two nonzero elements, then (a, 0)(0, b) = (0, 0).