MATH 4281 HOMEWORK 10 (SOLUTIONS)

17. Rings: Definitions and Elementary Properties

J3. Prove that in a commutative ring R with unity, a divisor of zero cannot be invertible.
Proof. Let $r \in R$ be a zero divisor, and suppose r is invertible. Then there exists $s \in R$ such that $r s=1$. Since r is a zero divisor, there exists a nonzero element $t \in R$ such that $t r=0$. Then multiplying the equation $r s=1$ on the left by t, we have $\operatorname{trs}=t \cdot 1=t$, which implies $0 \cdot s=t$ so $0=t$, a contradiction.

J4. Suppose $a b \neq 0$ in a commutative ring R. If either a or b is a divisor of zero, so is $a b$.
Proof. Without loss of generality, suppose $a \in R$ is a zero divisor, then there exists a nonzero element $c \in R$ such that $a c=c a=0$. Multiplying this by b and use the associativity we can get $c(a b)=(c a) b=0 \cdot b=0$. By assumption $a b \neq 0$, so we must have $a b$ is a zero divisor of R.

J5. Suppose a is neither 0 nor a divisor of zero. If $a b=a c$, then $b=c$.
Proof. Let R be the commutative ring. Suppose $a b=a c$, i.e., $a b-a c=0$. Then by distributivity, $a(b-c)=0$. Since $a \neq 0$, and a is not a zero divisor, we must have $b-c=0$. Hence $b=c$.

J6. $A \times B$ always has divisors of zero.
Proof. Let $a \in A$ and $b \in B$ be any two nonzero elements, then $(a, 0)(0, b)=(0,0)$.

