MATH 4281 HOMEWORK 5

9. ISOMORPHISM

D2. Find the isomorphism classes of: $S_{3}, \mathbb{Z}_{6}, \mathbb{Z}_{3} \times \mathbb{Z}_{2}, \mathbb{Z}_{7}^{\times}$.
Claim: we will show that $\mathbb{Z}_{6} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{7}^{\times}$, and S_{3} is isomorphic to non of the other three groups.

Proof. Since $\operatorname{gcd}(2,3)=1, \mathbb{Z}_{3} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{6}$ by Chinese Remainder Theorem. Also, we know \mathbb{Z}_{7}^{\times}is a cyclic group of order 6 , and any cyclic group of order n is isomorphic to \mathbb{Z}_{n}. Hence $\mathbb{Z}_{6} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{7}^{\times}$. But S_{3} is not abelian (In fact, it is the smallest nonabelian group.), so it is not a cyclic group, and hence is not isomorphic to any of the other groups.
13. If G is any group, and $a \in G$, prove that $f(x)=a x a^{-1}$ is an automorphism of G.

Proof. Let $f: G \rightarrow G$ be the map defined by $f(x)=a x a^{-1}$, we will show f is an automorphism.
To show f is a homomorphism, let $x, y \in G$. Then

$$
f(x y)=a x y a^{-1}=a x e y a^{-1}=a x\left(a^{-1} a\right) y a^{-1}=\left(a x a^{-1}\right)\left(a y a^{-1}\right)=f(x) f(y)
$$

Also, note that $x \in \operatorname{ker}(f)$ if and only if $a x a^{-1}=e$ for all a, and this happens if and only if $x=e$, so f has a trivial kernel. Thus it is injective. For the surjectivity, let $y \in G$ be given, let $x:=a^{-1} y g$, then $f(x)=y$.

I4. Prove the set $\operatorname{Aut}(G)$ of all automorphisms of G is a subgroup of S_{G}.

Proof. The identity map is an automorphism, so the set $\operatorname{Aut}(G) \neq \varnothing$. Now we show the composition of two automorphisms is an automorphism. Let $\varphi, \gamma \in \operatorname{Aut}(G)$, and let $\rho=\varphi \circ \gamma$. Let $g, h \in G$, then

$$
\begin{aligned}
\rho(g h) & =\varphi(\gamma(g h)) \\
& =\varphi(\gamma(g) \gamma(h)) \\
& =\varphi(\gamma(g)) \varphi(\gamma(h)) \\
& =\rho(g) \rho(h) .
\end{aligned}
$$

Thus ρ is a homomorphism. We've already known that ρ is a bijection, so that ρ is an automorphism.
Now we show the inverse of an automorphism is an automorphism. Let $k=g h$. Since φ is a permutation, we can find g^{\prime}, h^{\prime} and k^{\prime} so that $\varphi\left(g^{\prime}\right)=g, \varphi\left(h^{\prime}\right)=h$ and $\varphi\left(k^{\prime}\right)=k$. Since φ is a homomorphism, $\varphi\left(g^{\prime} h^{\prime}\right)=g h=k$. Applying φ^{-1} to both sides, we get $g^{\prime} h^{\prime}=k^{\prime}$, that is,

$$
\varphi^{-1}(g h)=\varphi^{-1}(g) \varphi^{-1}(h),
$$

so that φ^{-1} is an automorphism and so $\operatorname{Aut}(G) \leq S_{G}$.

12. Partition and equivalence relations

D4. Let $a \sim b$ iff there is an integer k such that $a^{k}=b^{k}$.
Proof. Reflexive: $a^{k}=a^{k}$, so $a \sim a$.
Symmetric: Suppose $a \sim b$, there exists k so that $a^{k}=b^{k}$. So $b^{k}=a^{k}$, and $b \sim a$.
Transitive: Suppose $a \sim b$ and $b \sim c$, then there exists k_{1}, k_{2} so that $a^{k_{1}}=b^{k_{1}}$ and $b^{k_{2}}=c^{k_{2}}$. Therefore we have $k_{1} k_{2}$ satisfying $a^{k_{1} k_{2}}=c^{k_{1} k_{2}}$, hence $a \sim c$.
$[e]=\left\{g \in G: g^{n}=e\right.$ for some $\left.n \in \mathbb{Z}_{\geq 0}\right\}$.

