MATH 4281 HOMEWORK 7 (SOLUTIONS)

13. Counting Cosets

C3. Let G have order 4. Either G is cyclic, or every element of G is its own inverse. Conclude that every group of order 4 is abelian.

Proof. By Lagrange's Theorem, every element in G has order 1,2 or 4 . If there is an element $x \in G$ with order 4, then $G=\langle x\rangle$, which is a cyclic group, so certainly abelian.

Suppose there is no element in G has order 4, then every nonidentity element in G must have order 2, i.e., $g^{2}=1$ for all $g \in G$. Pick two nonidentity elements $x, y \in G$, so $x^{2}=1, y^{2}=1$ and $(x y)^{2}=1$. This implies $x y=(x y)^{-1}=y^{-1} x^{-1}=y x$, so x and y commutes. Thus G is abelian. (We can further show in this case $G \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ via the map $\varphi: \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} \rightarrow G$ defined by $\left.\varphi(\bar{a}, \bar{b})=x^{a} y^{b}.\right)$

* The second paragraph above actually shows a stronger assertion: Any group in which all nonidentity elements have order 2 is abelian.

H1. Let G be a group of order 8. If every $x \neq e$ in G has order 2 , let a, b, c be three such elements. Prove that $G=\{e, a, b, c, a b, b c, a c, a b c\}$. Conclude that $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Suppose every nonidentity element in G has order 2. In other words, every element is its own inverse. Define a map $\varphi: G \rightarrow G$ by $\varphi(g)=g^{-1}$. This is an identity map and hence is an isomorphism. By the highlighted sentence in C3, we know that G is abelian. Let $a, b \in G$ be two elements of order 2 , and pick $c \in G$ distinct from $e, a, b, a b$. We claim that

$$
G=\{e, a, b, c, a b, a c, b c, a b c\} .
$$

By cancellation law, we can check these eight elements are distinct. For example, if $a b=b c=c b$, the cancellation law implies $a=c$, a contradiction.

Now the group G can be described as

$$
G=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=e, a b=b a, a c=c a, b c=c b\right\rangle .
$$

From this presentation, we can check

$$
\varphi: G \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

is an isomorphism defined by

$$
a \mapsto(1,0,0) \quad b \mapsto(0,1,0) \quad c \mapsto(0,0,1)
$$

H2. Assume G has an element a of order 4. Let $H=\langle a\rangle=\left\{e, a, a^{2}, a^{3}\right\}$. If $b \neq H$, then the coset $H b=$ $\left\{b, a b, a^{2} b, a^{3} b\right\}$. By Lagrange's theorem, G is the union of $H e=H$ and $H b$, hence

$$
G=\left\{e, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\} .
$$

Assume there is in $H b$ an element of order 2. (Let b be this element.) If $b a=a^{2} b$, prove that $b^{2} a=a^{2} b^{2}$, hence $a=a^{4}$, which is impossible. (Why?) Conclude that either $b a=a b$ or $b a=a^{3} b$.

Proof. Define $H:=\left\{e, a, a^{2}, a^{3}\right\}$, and let b be an element in G that is not in H, so $b H \neq H$.
Now we show $b a=a^{2} b$. For the sake of contradiction, suppose $b a=a^{2} b$, then

$$
b a^{2} b=b a a b=a^{2} b a b=a^{2} a^{2} b b=a^{4} b^{2}=e e=e
$$

But then

$$
a=e a=b^{2} a=b b a=b a^{2} b=e,
$$

contradicting the fact that a is an element of order 4. Thus, we must have either $b a=a b$ or $b a=a^{3} b$.
H3. Let b be as in part 2. Prove that if $b a=a b$, then $G \cong \mathbb{Z}_{4} \times \mathbb{Z}_{2}$.
Proof. Suppose $b a=a b$, then G is abelian. We can easily check

$$
\varphi: G \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2}
$$

is an isomorphism defined by

$$
a \mapsto(1,0) \quad b \mapsto(0,1)
$$

