MATH 4281 HOMEWORK 8 (SOLUTIONS)

14. Homomorphisms

E2 Suppose $a \in G$ has order 2. Then $\langle a\rangle$ is a normal subgroup of G if and only if $a \in Z(G)$.
Proof. (\Leftarrow) Suppose $a \in Z(G)$ and $\operatorname{ord}(a)=2$. Then the subgroup $\langle a\rangle$ generated by a has only 2 elements, namely $1, a$. Since $a \in Z(G)$, and certainly 1 commutes with all elements in G. So for any $g \in G$, we have $g\langle a\rangle=\langle a\rangle g$.
(\Rightarrow) Suppose $\langle a\rangle$ is an order 2 normal subgroup of G, then a is the only nonidentity element in $\langle a\rangle$. Then for all $g \in G$, we have $g a g^{-1}=1$ or $g a g^{-1}=a$. If the latter case occurs, then $\langle a\rangle \subset Z(G)$, and we are done. So assume that $g a g^{-1}=1$. Then $g a=a g$, thus multiplying on the left by g^{-1} we can get $a=1$, a contradiction. Thus $\langle a\rangle \subset Z(G)$.

E3. If a is an element of $G,\langle a\rangle$ is a normal subgroup of G if and only if a has the following property: For any $x \in G$ there is a positive integer k such that $x a=a^{k} x$.

Proof. Let $a \in G$, then

$$
\begin{aligned}
\langle a\rangle \unlhd G & \Longleftrightarrow x\langle a\rangle=\langle a\rangle x, \quad \forall x \in G \\
& \Longleftrightarrow \text { there exists some } y \in\langle a\rangle \text { such that } x a=y x \\
& \Longleftrightarrow x a=a^{k} x \text { for some } k
\end{aligned}
$$

E4. In a group G, a commutator is any product of the form $a b a^{-1} b^{-1}$, where a and b are any elements of G. If a subgroup H of G contains all the commutators of G, then H is normal.

Proof. Suppose H is a subgroups of G containing all the commutators. Let $g \in G$ and $h \in H$. Then $g h g^{-1} h^{-1}=h^{\prime}$ for some $h^{\prime} \in H$ since H contains all the commutators. But then $g h g^{-1}=h^{\prime} h \in H$, so $g H g^{-1} \subset H$ for all $g \in G$. Multiplying g^{-1} on the left and g on the right we can get $\left(g^{-1} g\right) h\left(g^{-1} g\right) \subset g^{-1} H g \Rightarrow H \subset g^{-1} H g$. Thus, H is normal in G.

E5. If H and K are subgroups of G, and K is normal, then $H K$ is a subgroup of G.
Proof. Let H, K be subgroups of G, and suppose K is normal. Then we know $H K=K H$. Let $a, b \in H K$. We prove $a b^{-1} \in H K$ so $H K$ is a subgroup by the subgroup criterion. Let

$$
a=h_{1} k_{1} \quad \text { and } \quad b=h_{2} k_{2},
$$

for some $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Thus $b^{-1}=k_{2}^{-1} h_{2}^{-1}$, so $a b^{-1}=h_{1} k_{1} k_{2}^{-1} h_{2}^{-1}$. Let $k_{3}=k_{1} k_{2}^{-1} \in K$ and $h_{3}=h_{2}^{-1}$. Thus $a b^{-1}=h_{1} k_{3} h_{3}$. Since $H K=K H$,

$$
k_{3} h_{3}=h_{4} k_{4}, \quad \text { for some } h_{4} \in H, k_{4} \in K
$$

Thus $a b^{-1}=h_{1} h_{4} k_{4} \in H K$, as desired.

