MATH 4281 HOMEWORK 6 (SOLUTIONS)

10. Order of Group Elements

D6. If a is the only element of order k in G, then a is in the center of G.
Proof. Let $a \in G$ and suppose a is the only element of order k in G. Recall that the order of every element in a group is equal to its conjugate, so ord $(a)=\operatorname{ord}\left(g a g^{-1}\right)=k$ for all $g \in G$. Therefore $a=g a g^{-1}$, and hence $a g=g a$ for all g.

11. Cyclic Groups

E7. $\langle a\rangle \times\langle b\rangle$ is cyclic if and only if $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are relatively prime.
Proof. Suppose $\operatorname{ord}(a), \operatorname{ord}(b)$ are not relatively prime, and let $\operatorname{ord}(a)=m, \operatorname{ord}(b)=n$. From parts 5 and 6 , we have

$$
\begin{aligned}
\operatorname{gcd}(m, n)>1 & \Longleftrightarrow \operatorname{lcm}(m, n)<m n \\
& \Longleftrightarrow \text { every element of }\langle a\rangle \times\langle b\rangle \text { has order less than } m n \\
& \Longleftrightarrow\langle a\rangle \times\langle b\rangle \text { is not cyclic. }
\end{aligned}
$$

E8. Let G be an abelian group of order $m n$, where m and n are relatively prime. Prove: If G has an element of a of order m and an element b of order n, then $G \cong\langle a\rangle \times\langle b\rangle$.

Proof. Let G be an abelian group with an element a of order m and an element b of order n. Recall that for any abelian group, we have $\operatorname{ord}(a) \cdot \operatorname{ord}(b)=\operatorname{ord}(a b)$ for any element a, b. (This is not true for nonabelian groups in general.) Hence there is an element $a b \in G$ with order $m n$. Therefore G is a cyclic group of order $m n$, i.e., $G \cong \mathbb{Z} / m n \mathbb{Z}$. But since m, n are coprime, from the Chinese Remainder Theorem $G \cong \mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}=\langle a\rangle \times\langle b\rangle$.

E9. Let $\langle a\rangle$ be a cyclic group of order $m n$, where m and n are relatively prime, and prove that $\langle a\rangle \cong\left\langle a^{m}\right\rangle \times\left\langle a^{n}\right\rangle$.
Proof. This is a direct consequence of $E 8$ above. From the question above, we know that $\langle a\rangle \cong\langle b\rangle \times\langle c\rangle$, where $b, c \in\langle a\rangle$ are two elements with order n and m, respectively. Thus $\langle a\rangle \cong\left\langle a^{m}\right\rangle \times\left\langle a^{n}\right\rangle$.

