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(1) 1.8.21
Solution: Let us count all possible subsets Y of A such that |B ∩ Y | = 1 There are

k different ways to select one element of Y from B. The remaining elements of Y come
from A \B and these elements can be chosen from any subset of A \B. Since A \B has
2|A\B| = 2n−k subsets, we have k2n−k such possible subsets as Y .

(2) 1.8.33
1st Solution: We first give a combinatorial proof. Notice that the left hand side of the

given identity counts the number of k-subsets of an n set X . We’ll show that the right
hand side counts the same thing. Let Y be a fixed subset of X with |Y | = 2. k-subsets
of X can be divided into three disjoint classes: a) k-subset has 0 common element with
Y , b) k-subset has 1 common element with Y , or c) k-subset has two common elements

with Y . First, we count k-subsets of X that are disjoint from Y . There are

(

n − 2

k

)

such subsets. Next, we count k-subsets of X that have a 1 common element with Y .

There are 2 ways to select one element from Y , and there are

(

n − 2

k − 1

)

ways to select

the remaining k − 1 elements from X \ Y . Thus, there are 2

(

n − 2

k − 1

)

subsets in class b).

Finally, we count k-subsets of X that have 2 elements from Y . There are

(

n − 2

k − 2

)

such

k-subsets. We counted three disjoint classes of k-subsets whose sum gives us exactly the
right hand side of the given identity.

2nd Solution: We give an algebraic proof. Let us verify that the left-hand side and
right-hand side of the given identity are equal.

(

n

k

)

=

(

n − 2

k

)

+ 2

(

n − 2

k − 1

)

+

(

n − 2

k − 2

)

n!
k!(n−k)! = (n−2)!

k!(n−2−k)! + 2 (n−2)!
(k−1)!(n−k−1)! + (n−2)!

(k−2)!(n−k)!

Next, we multiply both sides with k!(n−k)!
(n−2)! .

n(n − 1) = (n − k)(n − k − 1) + 2k(n − k) + k(k − 1)
n2 − n = n2 − 2kn + k2 − n + k + 2kn− 2k2 + k2 − k

n2 − n = n2 − n.

3rd Solution: Using Pascal’s identity, we have

(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

= (

(

n − 2

k

)

+
(

n − 2

k − 1

)

) + (

(

n − 2

k − 1

)

+

(

n − 2

k − 2

)

) =

(

n − 2

k

)

+ 2

(

n − 2

k − 1

)

+

(

n − 2

k − 2

)

(3) 2.5.1
Solution (with induction):
Let sn =

∑n
k=1

1
k(k+1) . By experiment, we see that sn = 1 − 1

n+1 . Let us denote this

statement by P (n).
P (1) holds: s1 = 1

1·2 = 1 − 1
1+1

Next, assume that P (n − 1) holds for n ≥ 1, and we will show that P (n) holds.
sn =

∑n
k=1

1
k(k+1) = sn−1 + 1

n(n+1) = 1 − 1
(n−1)+1 + 1

n(n+1) = 1 − 1
n + ( 1

n − 1
(n+1) ) =

1 − 1
(n+1) .

2nd Solution: sn =
∑n

1
1

k(k+1) = (1
1 − 1

2 ) + (1
2 − 1

3 ) + ..... + ( 1
n−1 − 1

n ) + ( 1
n − 1

n+1 ) =

1 − 1
n+1 .
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(4) 2.5.2
1st Solution:

Let an =
∑n

k=0 k

(

n

k

)

. By experiment, we conjecture that an = n2n−1. We give an

algebraic proof below

an = 0 ·

(

n

0

)

+ 1 ·

(

n

1

)

+ 2 ·

(

n

2

)

+ .... + k ·

(

n

k

)

+ ... + (n− 1) ·

(

n

n − 1

)

+ n ·

(

n

n

)

=

1 · n!
1!(n−1)! + 2 · n!

2!(n−2)! + 3 · n!
3!(n−3)! + .... + k · n!

k!(n−k)! + ... + n · n!
n!(n−n)! = n!

0!(n−1)! +
n!

1!(n−2)! +
n!

2!(n−3)! + ....+ n!
(k−1)!(n−k)! + ...+ n!

(n−1)!(n−n)! = n( (n−1)!
0!(n−1)! +

(n−1)!
1!(n−2)! +

(n−1)!
2!(n−3)! +

.... + (n−1)!
(k−1)!(n−k)! + ... + (n−1)!

(n−1)!0!) = n2n−1.

2nd Solution: Let’s now give a combinatorial proof. Each number k ·

(

n

k

)

counts

the number of k-subsets of an n-set X with a distinguished element, that is, the pairs
(Y, y) such that |Y | = k and y belongs to Y . If we choose Y first and then y, we get the
left hand side of the identity. If we choose y first, then there are 2n−1 subsets that can
contain y. We get the right hand side of the identity.

3rd Solution: By Binomial Theorem, we have (1 + x)n =

(

n

0

)

+

(

n

1

)

x +

(

n

2

)

x2 +

· · · +

(

n

n − 1

)

xn−1 +

(

n

n

)

xn. Take derivative from both sides, and let x = 1.

(5) 3.8.8
Solution:

a) Using Pascal’s identity

(

n

k

)

=

(

n − 1

k

)

+

(

n − 1

k − 1

)

for k = 1, · · · , m, we have

∑m
k=0(−1)k

(

n

k

)

=

(

n

0

)

− (

(

n − 1

1

)

+

(

n − 1

0

)

) + (

(

n − 1

2

)

+

(

n − 1

1

)

) − (

(

n − 1

3

)

+
(

n − 1

2

)

) + · · · + (−1)m−1(

(

n − 1

m − 1

)

+

(

n − 1

m − 2

)

) + (−1)m(

(

n − 1

m

)

+

(

n − 1

m − 1

)

) =

(−1)m(

(

n − 1

m

)

b) 1st Solution:
∑n

k=0

(

n

k

)(

k

m

)

=
∑n

k=0
n!

k!(n−k)!
k!

m!(k−m)! = n!
m!(n−m)!(

∑n
k=0

(n−m)!
(n−k)!(k−m)! ) =

(

n

m

)

2n−m.

2nd Solution: We give a combinatorial proof. Notice that the right hand side of the
given identity counts the number of pairs of subsets (A, B) of an n-set X , where |A| = m,
A ⊂ B ⊂ X . To get the right hand side, we first choose an m-set A of an n-set X . This

can be done in

(

n

m

)

ways. Next, we choose the rest of the elements of B from any subset

of A \ B. There are 2|A/B| = 2n−m such subsets. To get the left hand side, we notice

that the each number

(

n

k

)(

k

m

)

counts the number of ways to choose k-subsets B of an

n-set X and then choose an m-set A out of that k-subset. In conclusion, we counted the
number of the pairs (A, B) as above in two different ways obtaining the right and the
left hand side of the equality, which proves that the given identity.
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(6) 3.8.12

1st Solution: By Binomial Theorem, we have (x + y)n =

(

n

0

)

xn +

(

n

1

)

xn−1y +
(

n

2

)

xn−2y2 + · · · +

(

n

n − 1

)

xyn−1 +

(

n

n

)

yn. To get the given identity, let x = 1 and

y = 2.
2nd Solution We give a combinatorial proof. There are 3n trinary strings with length

n. Partition these strings into disjoint groups depending on the number of 1s in the
string: 0 ones, 1 one, 2 ones, 3 ones, ... n ones. The number of length n strings with

exactly n − k ones is

(

n

n − k

)

2k =

(

n

k

)

2k.
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