MATH 8702 Homework Assignment #1 Due 02/01 INSTRUCTOR: Anar Akhmedov

- 1. Let f be a holomorphic map on the unit disc \mathbb{D} , and |f(z)| < 1 for all $z \in \mathbb{D}$. Prove that if f has two fixed points, then f(z) = z.
- 2. Suppose U and V are conformally equivalent. Prove that if U is simply connected, then so is V.
- 3. Determine the image of the strip $\{z \mid -1 < Im(z) < 1\}$ under the map $f(z) = \frac{z}{z+i}$.
- 4. Find a conformal map between the unit disc and the domain $\{z \mid Re(z) > 0, Im(z) > 0\}$.
- 5. Let U denote the open connected set between two circles which are tangent at the point z_0 . Map U conformally onto the unit disc.
- 6. Prove that there is no one-to-one conformal map of the punctured disc $\{z \in \mathbb{C} : 0 < |z| < 1\}$ onto the annulus $\{z \in \mathbb{C} : 1 < |z| < 2\}$.
- 7. Find a conformal map f between the unit disc and the region $\{z \in \mathbb{C} : |arg(z)| < 1\}$ such that f(0) = 1.