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INSTRUCTOR: Anar Akhmedov
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Instructions:

Take home final is due on Monday, May 10th, during my office hours (2.00pm - 5.00pm). My office is in
Vincent Hall, room 355. Late submission will not be accepted. You are NOT allowed to work on this with anyone
else. If you have any questions, send me an email at: akhmedov@math.umn.edu.

Show all of your work. No credit will be given for an answer without some work or explanation.
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1. (20 points) Show that a finite simple graph with more than one vertex has at least two vertices with the
same degree.

Solution: Let G be any finite simple graph with more than one vertex and |VG| = n ≥ 2. First, we notice
that the maximal degree of any vertex in G is less than equal n− 1. Also, if our graph G is not connected,
then the maximal degree is strictly less than n − 1.

Case 1: Assume that G is connected. We can not have a vertex of degree 0 in G, so the set of vertex degrees
is a subset of S = {1, 2, · · · , n − 1}. Since the graph G has n vertices, by pigeon-hole principle we can find
two vertices of the same degree in G.

Case 2: Assume that G is not connected. G has no vertex of degree n − 1, so the set of vertex degrees is
a subset of S′ = {0, 1, 2, · · · , n − 2}. By pigeon-hole principle again, we can find two vertices of the same
degree in G.
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2. (20 points) Find all values of n ≤ 2010 such that φ(n) = 1000.

Solution. 1000 = 2353 = n(1 − 1/p1)(1 − 1/p2)(1 − 1/p3) · · · (1 − 1/pk), where p1, p2, · · · , pk are the prime
divisors of n. We can assume that pi is odd for 2 ≤ i ≤ k. Using the fact that pi−1 is an even divisors of 1000
for i ≥ 2, we find the following possible values for pi − 1: 2, 4, 8, 10, 20, 40, 50, 100, 200, 250, 500, 1000. Since
pi is prime, we reduce the possible values for pi : 3, 5, 11, 41, 101, 251. If p1 is not odd, then p1 = 2. Now
use the fact that n ≤ 2010, to conclude that there are five such numbers: 1111 = 11× 101, 1255 = 5× 251,
1375 = 53 × 11, 1875 = 3 × 54, and 2008 = 23 × 251.
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3. (20 points) Prove the following two identities

a)
∑n

k=0

(

n

k

)

Fk−1 = F2n−1

b)
∑n

k=0

(

n

k

)

F3k−1 = 2nF2n−1

Solution: We will use Binet’s formula for the Fibonacci numbers and Binomial Theorem to prove a) and

b). We have Fn = 1
a−b

(an − bn), where a = 1+
√

5
2 and b = 1−

√
5

2 . Since a and b are solutions of the equation

x2 − x− 1 = 0, we have the following identities hold: a2 = a + 1, b2 = b + 1. Using these identities, we have
a3 = a2a = (a + 1)a = a2 + a = 2a + 1, and b3 = b2b = (b + 1)b = b2 + b = 2b + 1.

a)

(

n

0

)

F−1 +

(

n

1

)

F0 +

(

n

2

)

F1 + · · ·+

(

n

n

)

Fn−1 =

(

n

0

)

1
a−b

(a−1 − b−1)+

(

n

1

)

1
a−b

(a0 − b0)+

(

n

2

)

1
a−b

(a1−

b1)+ · · ·+

(

n

n

)

1
a−b

(an−1− bn−1) = 1
a−b

( 1
a
(

(

n

0

)

a0 +

(

n

1

)

a1 +

(

n

2

)

a2 + · · ·+

(

n

n

)

an)− 1
b
(

(

n

0

)

b0 +

(

n

1

)

b1 +
(

n

2

)

b2+ · · ·+

(

n

n

)

bn)) = 1
a−b

( 1
a
(a+1)n− 1

b
(b+1)n) = 1

a−b
( 1

a
(a2)n− 1

b
(b2)n) = 1

a−b
(a2n−1−b2n−1) = F2n−1.

b)

(

n

0

)

F−1 +

(

n

1

)

F2 +

(

n

2

)

F5 + · · ·+

(

n

n

)

F3n−1 =

(

n

0

)

1
a−b

(a−1−b−1)+

(

n

1

)

1
a−b

(a2−b2)+

(

n

2

)

1
a−b

(a5−

b5) + · · · +

(

n

n

)

1
a−b

(a3n−1 − b3n−1) = 1
a−b

( 1
a
(

(

n

0

)

a0 +

(

n

1

)

a3 +

(

n

2

)

a6 + · · · +

(

n

n

)

a3n) − 1
b
(

(

n

0

)

b0 +
(

n

1

)

b3 +

(

n

2

)

b6 + · · · +

(

n

n

)

b3n)) = 1
a−b

( 1
a
(a3 + 1)n − 1

b
(b3 + 1)n) = 1

a−b
( 1

a
(2a + 2)n − 1

b
(2b + 2)n) =

1
a−b

( 1
a
(2a2)n − 1

b
(2b2)n) = 1

a−b
(2na2n−1 − 2nb2n−1) = 2nF2n−1.
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4. (20 points) The number N is said to be perfect if σ(N) = 2N . Show that if 2n − 1 is prime, then
N = 2n−1(2n − 1) is perfect.

Solution: Since p = 2n − 1 is prime, all the divisors of N = 2n−1(2n − 1) are as follows: 1, 2, 4, · · · , 2n, p,
2p, 4p, · · · , 2np. We have σ(N) = (1+2+4+ · · ·+2n)+(p+2p+4p+ · · ·+2n−1p) = (2n−1)+p(2n−1) =
(2n − 1)(p + 1) = (2n − 1)2n = 2N . Thus, N is perfect.

Alternatively, using the facts that σ is a multicplicative function, σ(p) = p + 1 = 2n, and σ(2n−1 − 1) =
(2(n−1)+1 − 1)/(2 − 1) = 2n − 1, we have σ(N) = σ(2n − 1)σ(p) = (2n − 1)2n = 2N .

Remark: The converse of this statement also holds. If N is an even perfect number, then N = 2n−1(2n−1)
and 2n − 1 is prime. Try to prove this fact.
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5. (20 points) The girth of a graph is the length of the smallest polygon in the graph. Let G be a graph with
girth 5 for which all vertices have degree ≥ d. Show that G has at least d2 + 1 vertices.

Solution. Let fix a vertex v of G. Since each vertex of G has degree ≥ d, there are at least d vertices v1, v2,
..., and vd with distance 1 from v. Since the girth of G is 5, G has no 3 or 4-cycles. Using this fact and the
vertices v1, v2, ..., vd, we can construct at least d(d − 1) new vertices with distance two from v. We choose
d − 1 distance 1 vertices vi1, vi2, · · · vi(d−1) from each vertex vi (different than v) for 1 ≤ i ≤ d. These new
vertices have distance 2 from v. Thus, |VG| ≥ 1 + d + d(d − 1) = d2 + 1.
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6. (15 points) Compute the chromatic polynomial of Cn, a cycle graph of lenght n.

Solution: We’ll give an inductive proof. We’ll denote a path of length n by Pn. First, we recall that the
chromatic polynomial of any tree Tn with n vertices is PTn

(λ) = λ(λ−1)n−1. Since C2 has only two vertices
(and connected), it’s chromatic polynomial is given by the degree two polynomial PC2

(λ) = λ(λ − 1) =
(λ−1)2+(λ−1) = (λ−1)2+(−1)2(λ−1). Using the reduction formula for the chromatic polynomial, we have
PC3

(λ) = PP3
(λ)−PC2

(λ) = λ(λ−1)2−λ(λ−1) = (λ−1)3− (λ−1) = (λ−1)3 +(−1)3(λ−1). Now assume
that the formula PCk

(λ) = (λ−1)k +(−1)k(λ−1) holds for all k ≤ n−1. We’ll show that it holds for k = n
as well. PCn

(λ) = PPn
(λ)−PCn−1

(λ) = λ(λ−1)n−1−((λ−1)n−1+(−1)n−1(λ−1)) = (λ−1)n+(−1)n(λ−1).
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7. (15 points) Let G be a complete graph on 17 vertices in which edge is coloured either red, blue or green.
Show that G contains at least two monochromatic triangles.

Solution: We’ll use the following fact that we proved in class: if the edges of the complete graph K6 are
coloured using two colors (say red or blue), then there will be at least two monochromatic triangles. We

proved this result in class by counting the number of bi-chromatic triangles. There are

(

6

3

)

= 20 triangles

in K6 and at most 18 of them are bi-chromatic. We can also use the following more general theorem that
we proved in class

Theorem: If the edges of Kn are colored red or blue, and ri i = 1, 2, · · · , n denotes the number of
red edges with vertex i as an endpoint, and if ∆ denotes the number of monochromatic triangles, then

∆ =

(

n

3

)

− 1/2
∑n

i=1 ri(n − 1 − ri).

Let choose an arbitrary vertex v of the graph K17. We have 16 edges incident to the vertex v, so by pigeon-
hole principle we have at least 6 edges of the same color (say green) from the vertex v. Let us denote the
other endpoints of these edges by v1, v2, v3, v4, v5, and v6.

Case 1: If none of the edges connecting the vertices v1, v2, v3, v4, v5, and v6 are green, then we have
2-coloured K6. We use the fact above to get two monochromatic triangles.

Case 2: If there are at least two green edges among the edges connecting the vertices v1, v2, v3, v4, v5, and
v6, then we get at least two green triangles. Use the end points of the green edges and the vertex v.

Case 3: If there is only one green edge among the edges connecting the vertices v1, v2, v3, v4, v5, and v6,
then we have one green triangle. Next, we apply the same argument that we used for the vertex v to other
vertex w . By our careful choice of w (here we assume that w is not a vertex of the green triangle), we make
sure that a new triangle is different than our first triangle.

Remark:. Try to generalize above Theorem for Kn with edges are colored red, blue and green. What is
the minimal number of monochromatic triangles for K17?
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8. (20 points) Prove that the bipartite graph K3,4 is not a planar graph. Show that K3,4 can be drawn on the
torus (the surface of a doughnut) without any crossings.

Solution: First, recall that if a graph G is planar and has no 3-cycles, then eG ≤ 2vG−4. The bipartite graph
K3,4 has 7 vertices, 12 edges, and no 3 cycles. K3,4 can not be a planar graph as it violates the inequality
eG ≤ 2vG − 4. The genus of the complete bipartite graph Km,n is given by g(Km,n) = ⌈(m − 2)(n − 2)/4⌉.
Using this formula, we can compute the genus: g(K3,4) = ⌈(3 − 1)(4 − 1)/4⌉ = 1.

ADD: embedding.eps
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