MATH 4707, HOMEWORK II, SOLUTIONS TO GRADED PROBLEMS

February 25, 2010
INSTRUCTOR: Anar Akhmedov
(1) 4.3.6

Solution: Let a_{n} denote the number of all such subsets of $\{1,2, \cdots, n\}$. We will find a recurrence relation for a_{n}. There are two types of subsets, the subsets that contain 1 and the subsets that do not contain 1. If the subset do not contain 1, then there are F_{n+1} possible subsets of $\{2,3, \cdots, n\}$ without consecutive elements (see Problem 4.1.3 page 67 and the solution on page 260). If the subset do contain 1 , then it can not contain 2 and n. There are F_{n-1} possible subsets of $\{3,4, \cdots, n-2\}$ without consecutive elements.

Thus, we get the following recurrence: $a_{n}=F_{n+1}+F_{n-1}$.
(2) 4.3 .8

Solution We give an inductive proof. By experiment, we check that $d_{n}=2^{n}-F_{n}>0$ for small n. For example, $d_{1}=2^{1}-F_{1}=1>0$. Assume that $d_{n-1}>0$ holds for all $n \geq 2$, and we will show that $d_{n}>0$ holds. $d_{n}=2^{n}-F_{n}=2^{n}-F_{n-1}-F_{n-2} \geq$ $2^{n}-2 F_{n-1}=2\left(2^{n-1}-F_{n-1}\right)=2 d_{n-1}>0$.
(3) 4.3 .9

Solution:
a) We give an inductive proof. It is easy to check that $F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}=F_{2 n+1}-1$ holds for small n. Assume that $F_{2}+F_{4}+F_{6}+\cdots+F_{2 k}=F_{2 k+1}-1$ for all $k \leq n-1$, we will show that it holds for $k=n . F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}=\left(F_{2 n-1}-1\right)+F_{2 n}=F_{2 n+1}-1$.
b) $F_{n+1}^{2}-F_{n}^{2}=\left(F_{n+1}-F_{n}\right)\left(F_{n+1}+F_{n}\right)=F_{n-1} F_{n+2}$

We will use Binet's formula for the Fibonacci numbers and Binomial Theorem to prove c) and d). We have $F_{n}=\frac{1}{a-b}\left(a^{n}-b^{n}\right)$, where $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}$. Since a and b are solutions of the equation $x^{2}-x-1=0$, we have the following identities: $a^{2}=a+1$, $b^{2}=b+1, a+b=1$, and $a b=-1$.
c) $\binom{n}{0} F_{0}+\binom{n}{1} F_{1}+\binom{n}{2} F_{2}+\cdots+\binom{n}{n} F_{n}=\binom{n}{0} \frac{1}{a-b}\left(a^{0}-b^{0}\right)+\binom{n}{1} \frac{1}{a-b}\left(a^{1}-\right.$ $\left.b^{1}\right)+\binom{n}{2} \frac{1}{a-b}\left(a^{2}-b^{2}\right)+\cdots+\binom{n}{n} \frac{1}{a-b}\left(a^{n}-b^{n}\right)=\frac{1}{a-b}\left(\left(\binom{n}{0} a^{0}+\binom{n}{1} a^{1}+\binom{n}{2} a^{2}+\right.\right.$ $\left.\left.\cdots+\binom{n}{n} a^{n}\right)-\left(\binom{n}{0} b^{0}+\binom{n}{1} b^{1}+\binom{n}{2} b^{2}+\cdots+\binom{n}{n} b^{n}\right)\right)=\frac{1}{a-b}\left((a+1)^{n}-(b+1)^{n}\right)=$ $\frac{1}{a-b}\left(\left(a^{2}\right)^{n}-\left(b^{2}\right)^{n}\right)=\frac{1}{a-b}\left(a^{2 n}-b^{2 n}\right)=F_{2 n}$
d) $\binom{n}{0} F_{1}+\binom{n}{1} F_{2}+\binom{n}{2} F_{3}+\cdots+\binom{n}{n} F_{n+1}=\binom{n}{0} \frac{1}{a-b}\left(a^{1}-b^{1}\right)+\binom{n}{1} \frac{1}{a-b}\left(a^{2}-\right.$ $\left.b^{2}\right)+\binom{n}{2} \frac{1}{a-b}\left(a^{3}-b^{3}\right)+\cdots+\binom{n}{n} \frac{1}{a-b}\left(a^{n+1}-b^{n+1}\right)=\frac{1}{a-b}\left(a\left(\binom{n}{0} a^{0}+\binom{n}{1} a^{1}+\binom{n}{2} a^{2}+\right.\right.$ $\left.\left.\cdots+\binom{n}{n} a^{n}\right)-b\left(\binom{n}{0} b^{0}+\binom{n}{1} b^{1}+\binom{n}{2} b^{2}+\cdots+\binom{n}{n} b^{n}\right)\right)=\frac{1}{a-b}\left(a(a+1)^{n}-b(b+1)^{n}\right)=$ $\frac{1}{a-b}\left(a\left(a^{2}\right)^{n}-b\left(b^{2}\right)^{n}\right)=\frac{1}{a-b}\left(a^{2 n+1}-b^{2 n+1}\right)=F_{2 n+1}$
(4) 5.4 .1

Solution: Let A denote the event that the sum of the points is 8 if we throw a die twice. $A=\{(4,4),(5,3),(3,5),(6,2),(2,6)\}$. Since the sample space S has 36 elements, we have $P(A)=|A| /|S|=5 / 36$.
(5) 5.4.3

Solution:

Since A and B are independent events, we have $P(A \cap B)=P(A) P(B)$. Thus, $P(A \cup B)=P(A)+P(B)-P(A \cap B)=P(A)+P(B)-P(A) P(B)$.

