(1) 6.10 .6

Solution: Since k divides n, we have $n=k s$ for some integer s. $a^{n}-1=a^{k s}-1=$ $\left(a^{k}\right)^{s}-1=\left(a^{k}-1\right)\left(\left(a^{k}\right)^{s-1}+\left(a^{k}\right)^{s-2}+\left(a^{k}\right)^{s-3}+\cdots\left(a^{k}\right)^{2}+a^{k}+1\right)$. Thus, $a^{k}-1$ divides $a^{n}-1$.

Now suppose that $a^{k}-1$ divides $a^{n}-1$. Let $n=k s+r$, where $r(0 \leq r \leq k-1)$ is a remainder when we divide n by k. $a^{n}-1=a^{k s} a^{r}-1=\left(\left(a^{k}\right)^{s}-1\right) a^{r}+\left(a^{r}-1\right)$. By the argument above, $a^{k}-1$ divides $a^{k s}-1$. Thus, $a^{k}-1$ must divide $a^{r}-1$. Since $r<k$, we have $r=0$.
(2) 6.10 .19

Solution: We prove the given statement by contradiction. Let's assume that $\sqrt[3]{5}=a / b$, where a and b are relatively prime integers. By cubing both sides of the above equation, we have $5 b^{3}=a^{3}$. Since 5 divides the left hand side of the last equation, we get 5 divides a. Let $a=5 c$ for some integer c. We have $5 b^{3}=(5 c)^{3}=125 c^{3}$, which simplifies to $b^{3}=25 c^{3}$.Thus, $b=5 d$ for some integer d. So, 5 divides both a and b. This contradicts to the fact that a and b are realtively prime.
(3) 6.10 .22

Solution: Let's divide the given set $X=\{1,2, \ldots, 2 n\}$ into the following n pairs: $p_{1}=\{1,2\}, p_{2}=\{2,4\}, p_{3}=\{3,6\}, \cdots, p_{i}=\{i, 2 i\}, \cdots, p_{n}=\{n, 2 n\}$. By Pigeonhole Principle, there are two numbers among these $n+1$ numbers that belong to same p_{k}. Thus, we get two numbers such that one divides the other.
(4) 7.3 .5

Solution:
a) No. The graph (with 7 nodes) can't have both a vertex of degree 6 and a vertex of degree 0 .
b) No. In any graph, the number of nodes with odd degree must be even.
(5) 7.3.9

Solution: If the given graph G is connected then we are done. Otherwise, G is the union of its connected components $G_{1}, G_{2}, \cdots, G_{m}$, where $m \geq 2$. If the vertices u and v belong to the different components G_{i} and G_{j} of G, then they are connected in \bar{G}. If the vertices u and w belong to the same component G_{i} of G, then they are connected by a path $u \rightarrow v \rightarrow w$ for some vertex v that belongs to G_{j}, where $j \neq i$. This shows that \bar{G} is connected.
(6) 7.3 .13

Solution: We will give an inductive proof based on m. Note that if $m=2$, then we have either two people who are strangers or all these $n+1$ people know each other. Suppose that our claim is true for $k=m \geq 2$, and we will prove it for $k=m+1$. Let X be any person among these $m n+1$ people. If X knows at least n others, then we are done. Otherwise, X knows at most $n-1$ others. There are at least $n(m-1)+1$ people who don't know X. By induction, among these $m(n-1)+1$ people there are either one person who knows n others or m people $Y_{1}, Y_{2}, \cdots Y_{m}$ who don't know each other. If the first case holds, then we are done. If not, then we have $m+1$ people $X, Y_{1}, Y_{2}, \cdots, Y_{m}$ who are strangers.

