Solution: If G^{\prime} is a connected graph with n nodes, then it has at least $n-1$ edges. Let assume that the given graph has k connected components $G_{1}, G_{2} \cdots, G_{k}$. We will denote by $n_{1}, n_{2}, \cdots, n_{k}$ the number of vertices in the corresponding components. Then the graph G has $n=n_{1}+\cdots n_{k}$ vertices. Since the graph G has k connected components, it follows from the above fact that it has at least $n-k$ edges. Hence, the number of edges $m \geq n-k$. This inequality implies that $k \geq n-m$.
(2) 8.5.4

Solution: Let G be any tree with n vertices. Suppose that a vertex v_{1} in G has degree d, and there are k vertices, $v_{2}, \cdots v_{k+1}$, of degree 1 . If $d=2$, then by Theorem 8.2.1 we have at least 2 leaves, so we are done. Next, we consider the case $d \geq 3$. Notice that the graph G has $n-k-1$ other vertices $v_{k+2}, \cdots v_{n}$ of degree at least 2. By Handshaking Lemma and Theorem 8.2.3, we have $2(n-1)=2 e_{G}=\operatorname{deg}\left(v_{1}\right)+\operatorname{deg}\left(v_{2}\right)+\cdots+\operatorname{deg}\left(v_{n}\right)=$ $d+k+\operatorname{deg}\left(v_{k+2}\right)+\cdots \operatorname{deg}\left(v_{n}\right) \geq d+k+2(n-k-1)$, which implies that $d \leq k$.
(3) 10.4 .9

Solution: Let $G=(X, Y)$ be the given bipartite graph. We will apply Theorem 10.3.1 (Hall's Theorem). Let S be any subset of X. If $|S| \geq m / 2$, then $\left|N_{G}(S)\right| \geq|S|$. If $|S|>m / 2$, we will show that $\left|N_{G}(S)\right| \geq|S|$ as well.

Let's assume that $\left|N_{G}(S)\right|<|S|$. Let y be any vertex in $Y-N_{G}(S)$. Since y can only be connected with the vertices in $X-S$, the degree of y can't be more than the number of elements in $X-S$. Since $|S|>m / 2$, the degree of y will be less than $m / 2$. This is a contradiction to the given statment. Thus, if $|S|>m / 2,\left|N_{G}(S)\right| \geq|S|$. Now we are ready to apply Hall's Theorem.
(4) 10.4.15

Solution: Note that we have 1-1 correspondence between the perfect matchings of the ladder graph and the tilings of a $2 \times n$ grid. Identify vertical edge with a vertical domino, and horizontal edge with a horizontal domino. Thus, the number of perfect matchings of the given graph is F_{n}, nth Fibonacci number.

