MATH 4707, HOMEWORK IV, SOLUTIONS TO GRADED PROBLEMS

April 12, 2010

INSTRUCTOR: Anar Akhmedov

(1) 8.5.3

Solution: If G' is a connected graph with n nodes, then it has at least n-1 edges. Let assume that the given graph has k connected components $G_1, G_2 \cdots, G_k$. We will denote by n_1, n_2, \cdots, n_k the number of vertices in the corresponding components. Then the graph G has $n = n_1 + \cdots n_k$ vertices. Since the graph G has k connected components, it follows from the above fact that it has at least n-k edges. Hence, the number of edges $m \ge n-k$. This inequality implies that $k \ge n-m$.

(2) 8.5.4

Solution: Let G be any tree with n vertices. Suppose that a vertex v_1 in G has degree d, and there are k vertices, $v_2, \dots v_{k+1}$, of degree 1. If d=2, then by Theorem 8.2.1 we have at least 2 leaves, so we are done. Next, we consider the case $d \geq 3$. Notice that the graph G has n-k-1 other vertices $v_{k+2}, \dots v_n$ of degree at least 2. By Handshaking Lemma and Theorem 8.2.3, we have $2(n-1)=2e_G=deg(v_1)+deg(v_2)+\dots+deg(v_n)=d+k+deg(v_{k+2})+\dots deg(v_n)\geq d+k+2(n-k-1)$, which implies that $d\leq k$.

(3) 10.4.9

Solution: Let G=(X,Y) be the given bipartite graph. We will apply Theorem 10.3.1 (Hall's Theorem). Let S be any subset of X. If $|S| \geq m/2$, then $|N_G(S)| \geq |S|$. If |S| > m/2, we will show that $|N_G(S)| \geq |S|$ as well.

Let's assume that $|N_G(S)| < |S|$. Let y be any vertex in $Y - N_G(S)$. Since y can only be connected with the vertices in X - S, the degree of y can't be more than the number of elements in X - S. Since |S| > m/2, the degree of y will be less than m/2. This is a contradiction to the given statment. Thus, if |S| > m/2, $|N_G(S)| \ge |S|$. Now we are ready to apply Hall's Theorem.

(4) 10.4.15

Solution: Note that we have 1-1 correspondence between the perfect matchings of the ladder graph and the tilings of a $2 \times n$ grid. Identify vertical edge with a vertical domino, and horizontal edge with a horizontal domino. Thus, the number of perfect matchings of the given graph is F_n , nth Fibonacci number.