MATH 4707 MIDTERM II

April 14, 2010

INSTRUCTOR: Anar Akhmedov

Name: \qquad
Signature: \qquad

ID \#: \qquad

Show all of your work. No credit will be given for an answer without some work or explanation.

Problem	Points
1	
2	
3	
4	
5	
6	7
Total $(150$ points $)$	

1. (20 points) Suppose that n is a positive integer such that $2^{n}+1$ is prime. Show that n is a power of 2 .
2. (30 points) Find the following values
a) $\phi\left(100^{n}\right)$, where $\phi(m)$ is the number of numbers that are not larger than m and relatively prime to m.
b) $\tau\left(100^{n}\right)$, where $\tau(m)$ is the number of divisors of m.
c) $\sigma\left(100^{n}\right)$, where $\sigma(m)$ is the sum of divisors of m.
3. (20 points) Show that the equation $x^{2}+y^{2}=3\left(t^{2}+s^{2}\right)$ has no integer solutions other than $x=y=t=s=0$.
4. (20 points) Prove that a graph G is bipartite if and only if it has no odd cycles.
5. (20 points) Show that every graph G of order $v_{G} \geq 1$ has at least $e_{G}-v_{G}+1$ cycles. (Hint: Use induction)
6. (20 points) Show that if a tree G has order $n \geq 4$ and not a star, then \bar{G} is connected and has at least $n-4$ cycles of length 3 .
7. (20 points) Prove that at a party of 14 people either there are five mutual acquaintances or there are three mutual strangers.
