MATH 4707 MIDTERM II

April 14, 2010

INSTRUCTOR: Anar Akhmedov

Name:

Signature: _____

ID #: _____

Show all of your work. No credit will be given for an answer without some work or explanation.

Problem	Points
1	
2	
3	
4	
5	
6	
7	
Total (150 points)	

1. (20 points) Suppose that n is a positive integer such that $2^n + 1$ is prime. Show that n is a power of 2.

2. (30 points) Find the following values

a) $\phi(100^n)$, where $\phi(m)$ is the number of numbers that are not larger than m and relatively prime to m.

b) $\tau(100^n)$, where $\tau(m)$ is the number of divisors of m.

c) $\sigma(100^n)$, where $\sigma(m)$ is the sum of divisors of m.

3. (20 points) Show that the equation $x^2 + y^2 = 3(t^2 + s^2)$ has no integer solutions other than x = y = t = s = 0.

4. (20 points) Prove that a graph G is bipartite if and only if it has no odd cycles.

5. (20 points) Show that every graph G of order $v_G \ge 1$ has at least $e_G - v_G + 1$ cycles. (Hint: Use induction)

6. (20 points) Show that if a tree G has order $n \ge 4$ and not a star, then \overline{G} is connected and has at least n-4 cycles of length 3.

7. (20 points) Prove that at a party of 14 people either there are five mutual acquaintances or there are three mutual strangers.