MATH 8301 TAKE HOME FINAL

December 6, 2011
INSTRUCTOR: Anar Akhmedov
Name: \qquad
Signature: \qquad
ID \#: \qquad

Show all of your work. No credit will be given for an answer without some work or explanation. You must do this exam individually. You may not consult with any other people about the exam, whether a student in this course or not. If a problem is unclear, you can ask me for a clarification. The exam is to be handed in to me by 2.00pm Friday, December 16. I'll be holding office hours from $1.00 \mathrm{pm}-2.00 \mathrm{pm}$ on Friday, December 16. The late take home final will not be accepted.

Problem	Points
1	
2	
3	
4	
5	
6	
7	Total $(70$ points $)$

1. (10 points) Given a map $f: \mathbb{S}^{2 n} \rightarrow \mathbb{S}^{2 n}$, show that there is some point $x \in \mathbb{S}^{2 n}$ with either $f(x)=x$ or $f(x)=-x$. Deduce that every map $\mathbb{R P}^{2 n} \rightarrow \mathbb{R P}^{2 n}$ has a fixed point. Construct maps $\mathbb{R P}^{2 n-1} \rightarrow \mathbb{R P}^{2 n-1}$ without fixed points from linear transformations $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ without eigenvectors.
2. (10 points) Compute the relative homology groups $H_{i}\left(\mathbb{R}^{n}, \mathbb{R P}^{m}\right)$ for $m \leq n$.
3. (10 points) Let $f: S^{2 n-1} \rightarrow S^{n}$ be a continuous map, and $X_{f}=D^{2 n} \cup_{f} S^{n}$ denote the topological space obtained from S^{n} by attaching a $2 n$-cell using f. Compute the homology groups of X_{f}.
4. (10 points). Let M_{g} be a closed orientable surface of genus $g \geq 1$. Prove that any continuous map $f: \mathbb{R P}^{2} \rightarrow M_{g}$ is null-homotopic.
5. (10 points) Let X be the quotient space of S^{2} under the identifications $x \sim-x$ for x in the equator S^{1}. Compute the fundamental group and homology groups $H_{i}(X)$. Do the same for S^{3} with antipodal points of the equatorial $S^{2} \subset S^{3}$ identified.
6. (10 points) Let g be a continous map from S^{2} to S^{2} such that $\|g(x)-x\|<1$ for all x in S^{2}. Must g be a surjective map? Justify your answer.
7. (10 points) Let $0 \rightarrow A_{*} \rightarrow B_{*} \rightarrow C_{*} \rightarrow 0$ be a short exact sequence of chain complexes. Show that if two of the three complexes A_{*}, B_{*}, C_{*} are exact, then so is the third.
