MATH 8301 MIDTERM

November 2, 2011

INSTRUCTOR: Anar Akhmedov

Name: \qquad
Signature: \qquad

ID \#: \qquad

Show all of your work. No credit will be given for an answer without some work or explanation.

Problem	Points
1	
2	
3	
4	
Total $(50$ points $)$	

1. (14 points) Construct a CW complex X such that
a) $\pi_{1}(X)=\mathbb{Z}_{20} \times \mathbb{Z}_{11}$
b) $\pi_{1}(X)=S_{3}$, where S_{3} is the group of permutations of $\{1,2,3\}$

Justify your answer.
2. (12 points) Let X be the topological space obtained from \mathbb{R}^{3} by removing the three coordinate axes. Compute $\pi_{1}(X)$.
3. (12 points) The graph \mathbb{G} has six vertices $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ and nine edges $a_{i} b_{j}$ for $i, j=1,2,3$. Let $X_{\mathbb{G}}$ be a space obtained from \mathbb{G} by attaching a 2 -cell along each loop formed by a cycle of four edges in \mathbb{G}. Find $\pi_{1}\left(X_{\mathbb{G}}\right)$.
4. (12 points) Suppose that $f_{t}: X \longrightarrow X$ is a homotopy such that f_{0} and f_{1} are each the identity map. Show that for any $x_{0} \in X$, the loop $f_{t}\left(x_{0}\right)$ represents an element of the center of $\pi_{1}\left(X, x_{0}\right)$.

