MATH 8301 MIDTERM

November 2, 2011

INSTRUCTOR: Anar Akhmedov

Name:

Signature: _____

ID #: _____

Show all of your work. No credit will be given for an answer without some work or explanation.

Problem	Points
1	
2	
3	
4	
Total (50 points)	

1. (14 points) Construct a CW complex X such that

a) $\pi_1(X) = \mathbb{Z}_{20} \times \mathbb{Z}_{11}$

b) $\pi_1(X) = S_3$, where S_3 is the group of permutations of $\{1, 2, 3\}$

Justify your answer.

2. (12 points) Let X be the topological space obtained from \mathbb{R}^3 by removing the three coordinate axes. Compute $\pi_1(X)$. 3. (12 points) The graph \mathbb{G} has six vertices $a_1, a_2, a_3, b_1, b_2, b_3$ and nine edges $a_i b_j$ for i, j = 1, 2, 3. Let $X_{\mathbb{G}}$ be a space obtained from \mathbb{G} by attaching a 2-cell along each loop formed by a cycle of four edges in \mathbb{G} . Find $\pi_1(X_{\mathbb{G}})$.

4. (12 points) Suppose that $f_t : X \longrightarrow X$ is a homotopy such that f_0 and f_1 are each the identity map. Show that for any $x_0 \in X$, the loop $f_t(x_0)$ represents an element of the center of $\pi_1(X, x_0)$.