MATH 8306 TAKE HOME FINAL

December 3, 2010

INSTRUCTOR: Anar Akhmedov

Name: \qquad
Signature: \qquad

ID \#: \qquad

Show all of your work. No credit will be given for an answer without some work or explanation. You must do this exam individually. You may not consult with any other people about the exam, whether a student in this course or not. If a problem is unclear, you can ask me for a clarification. The exam is to be handed in to me by noon Monday, December 20th. For your convenience, I'll be holding office hours from 10.00am-12.00pm on Monday, December 20th. The late take home final will not be accepted.

Problem	Points
1	
2	
3	
4	
5	
6	
7	Total $(30$ points $)$

1. (4 points) Construct a CW complex X such that $H_{0}(X)=\mathbf{Z}, H_{3}(X)=\mathbf{Z}_{\mathbf{2 1}}, H_{7}(X)=\mathbf{Z} \oplus \mathbf{Z} \oplus \mathbf{Z}$ and $H_{n}(X)=0$ for all $n \neq 0,3,7$.
2. (4 points) Let G be a topological group (i.e. a group G endowed with a topology that makes multiplication and inversion continous). Show that $\pi_{1}(G, e)$ is abelian, where e denote the identity element in G.
3. (5 points) Let X be a CW-complex. Show that if $p: R P^{2 n} \rightarrow X$ is a covering map, then p is a homeomorphism.
4. (5 points) Prove that $\tilde{H}_{k}(X * Y) \cong H_{k-1}(X \times Y, X \vee Y)$.
5. (3 points) Let $\phi: X \rightarrow X$ be a continous map satisfying the following assumptions: $\phi \circ \phi \circ \phi=i d_{X}$ and $\phi(x) \neq x$ for any $x \in X$. Show that there cannot be such a function ϕ if $X=S^{2}$. What if X is the two-dimensional torus?
6. (4 points) Let K be the Klein bottle. Compute the cohomology groups of K with \mathbf{Z} and \mathbf{Z}_{2} coefficients.
7. (5 points) Let $\mathbf{S O}(\mathbf{n})$ denote the group of orthogonal $n \times n$ matrices with real coefficients and determinant 1.
(a) Show that $\mathbf{S O}(\mathbf{n})$ is a manifold.
(b) Prove that $\mathbf{S O}(\mathbf{n})$ admits a nowhere zero vector field.
(c) Compute the Euler characteristic of $\mathbf{S O}(\mathbf{n})$.
