MATH 8307 TAKE HOME FINAL

April 29, 2016

INSTRUCTOR: Anar Akhmedov

Name: \qquad

Signature: \qquad

ID \#: \qquad

Show all of your work. No credit will be given for an answer without some work or explanation. You must do this exam individually. You may not consult with any other people about the exam, whether a student in this course or not. If a problem is unclear, you can ask me for a clarification. The exam is to be handed in to me by 3.20pm Thursday, May 12. For your convenience, I'll be holding office hours from $2.40 \mathrm{pm}-3.20 \mathrm{pm}$ on Thursday, May 12. The late take home final will not be accepted.

Problem	Points
1	
2	
3	
4	
5	
6	
Total $(30$ points $)$	

1. (5 points) Prove the follwing theorem Stiefel. If $n+1=2^{r} m$ with m odd, then there does not exist 2^{r} vector fields on the projective space $\mathbb{R P}^{n}$ which are everywhere linearly independent.
2. (5 points) Compute $\pi_{2}\left(\mathbb{C P}^{2}, \mathbb{R P}^{2}\right)$.
3. (5 points) Let M be a compact, orientable 4-manifold with the same betti numbers as $\mathbb{C P}^{2}$ and $H_{1}(M)=0$. Show that all the homology groups of M are torsion free and M has the same cohomology ring as $\mathbb{C P}^{2}$.
4. (5 points) Show that the set of isomorphism classes of 1-dimensional vector bundles over the space B form an abelian group with respect to the tensor product operation. Compute the above group for $B=S^{1}$.
5. (5 points) Show that the set Ω_{n} consisting of all unoriented cobordism classes of smooth closed n-manifolds can be made into an abelian group. Show that Ω_{4} contains at least four distinct elements.
6. (5 points) Show that the Hopf invariant of a map $f: S^{4 n-1} \rightarrow S^{2 n}$ defines a homomorphism. Using this homomorphism show that $\pi_{4 n-1}\left(S^{2 n}\right) \cong \mathbb{Z} \oplus A$, where A is some abelian group.
