MATH 8702 TAKE HOME FINAL

May 9, 2013

INSTRUCTOR: Anar Akhmedov

Name:	
Signature:	

ID #: _____

Show all of your work. No credit will be given for an answer without some work or explanation. You must do this exam **individually**. You may not consult with any other people about the exam, whether a student in this course or not. If a problem is unclear, you can ask me for a clarification. The exam is to be handed in to me by **2.30pm Friday**, May 17. The late take home final will not be accepted.

Problem	Points
1	
2	
3	
4	
5	
6	
7	
Total (70 points)	

1. (10 points) Suppose that τ is purely imaginary, say $\tau = it$ with t > 0. Consider the division of the complex plane into congurent rectangles obtained by considering the lines x = n/2, y = tm/2 as n and m range over the integers. (An example is the rectangle whose vertices are 0, 1/2, $1/2 + \tau/2$, and $\tau/2$).

a) Show that \wp is a real-valued on all these lines, and hence on the boundaries of all these rectangles.

b) Prove that \wp maps the interior of each rectangle conformally to the upper (or lower) half-plane.

2. (10 points) Let $\Omega = \mathbb{D} \setminus \{\frac{1}{2}, \frac{-1}{2}\}$. Determine all analytic functions $f : \Omega \to \Omega$ with the following property: if γ is any cycle in Ω which is not homologus to zero (mod Ω), then $f * \gamma$ is not homologus to zero (mod Ω).

3. (10 points) Prove that a continuous function on a domain is harmonic if and only if it satisfies the mean value property.

4. (10 points) By direct computation, show that if r(z) is a rational function of z, then the meromorphic 1-form r(z)dz of the Riemann sphere \mathbb{C}_{∞} satisfies the Residue Theorem. (Hint: write r(z) in partial fractions.)

5. (10 points) Let X be the compact Riemann surface associated to the equation $z^{2a} - 2w^b z^a + 1 = 0$, for fixed integers a, b. Identify the branch points of the covering of the Riemann sphere defined by the z coordinate and compute the genus of X.

6. (10 points) Let X be the hyperelliptic surface defined by $y^2 = x^5 - x$. Note that x and y are meromorphic functions on X. Compute the principal divisors div(x) and div(y).

7. (10 points) Show that the "Klein curve" X defined by $xy^3 + yz^3 + zx^3 = 0$ has genus 3, and realizes the Hurwitz bound by finding 168 automorphisms of X.