MATH 1571H SAMPLE MIDTERM PROBLEMS

September 29, 2013

INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 1.5, 1.6, 2.2 - 2.6.

- 1. Express the area of an equlateral triangle as a function of the length of a side.
- 2. (a) Represent function $h(x) = \sqrt{x^4 x}$ as a composition of two functions f and g. (b) Provide the formula for the composition f(g(x)) of $f(x) = x^3 + x$ and $g(x) = \sin(x)$.
- 3. Find the limit, if it exists. If the limit does not exist, explain why.

a)
$$\lim_{x\to -7} \frac{x+7}{x^2-49}$$

b)
$$\lim_{x\to 0} \frac{\sin(7x)}{\sin(5x)}$$

c)
$$\lim_{x\to 1} (x-1)^2 sin\left(\frac{2}{x-1}\right)$$

d)
$$\lim_{x\to 0} \left(\frac{1}{x\sqrt{x+1}} - \frac{1}{x} \right)$$

e)
$$\lim_{x \to -1} \frac{|x+1|}{x+1}$$

f)
$$\lim_{x\to-\infty}\frac{1}{x}sin\left(\frac{1}{x}\right)$$

- 4. State the ϵ δ definition of a limit (see page 70, textbook).
- 5. Find the vertical asymptotes of the function $f(x) = \frac{x-3}{(x^2-9)(x+4)}$
- 6. For what values of x is f continous?

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

- 7. If p(x) is a polynomial of odd degree, show that the equation p(x) = 0 has at least one solution.
- 8. Verify that the function $f(x) = x^3 3x + 2$ satisfies the hypothesis of the Mean Value Theorem on the interval [-2, 2]. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.

1

9. Show that the following function is not differentiable at x=0

$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$