MATH 1571H SAMPLE MIDTERM PROBLEMS

September 22, 2014
INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 1.5-1.7, 2.2-2.6.

1. Express the area of an equlateral triangle as a function of the length of a side.
2. (a) Represent function $h(x)=\sqrt{x^{4}-x}$ as a composition of two functions f and g. (b) Provide the formula for the composition $f(g(x))$ of $f(x)=x^{3}+x$ and $g(x)=\sin (x)$.
3. Find the limit, if it exists. If the limit does not exist, explain why.
a) $\lim _{x \rightarrow-7} \frac{x+7}{x^{2}-49}$
b) $\lim _{x \rightarrow 0} \frac{\sin (7 x)}{\sin (5 x)}$
c) $\lim _{x \rightarrow 1}(x-1)^{2} \sin \left(\frac{2}{x-1}\right)$
d) $\lim _{x \rightarrow 0}\left(\frac{1}{x \sqrt{x+1}}-\frac{1}{x}\right)$
e) $\lim _{x \rightarrow-1} \frac{|x+1|}{x+1}$
f) $\lim _{x \rightarrow-\infty} \frac{1}{x} \sin \left(\frac{1}{x}\right)$
4. State the $\epsilon-\delta$ definition of a limit (see page 70 , textbook).
5. Find the vertical asymptotes of the function $f(x)=\frac{x-3}{\left(x^{2}-9\right)(x+4)}$
6. For what values of x is f continous?

$$
f(x)=\left\{\begin{array}{lllll}
0 & \text { if } & x & \text { is rational } \\
1 & \text { if } & x & \text { is irrational }
\end{array}\right.
$$

7. If $p(x)$ is a polynomial of odd degree, show that the equation $p(x)=0$ has at least one solution.
8. Verify that the function $f(x)=x^{3}-3 x+2$ satisfies the hypothesis of the Mean Value Theorem on the interval $[-2,2]$. Then find all numbers c that satisfy the conclusion of the Mean Value Theorem.
9. Show that the following function is not differentiable at $x=0$

$$
f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

10. Show that $x^{3}-3 x+c$ has at most one root in $[0,1]$, no matter what c may be.
