MATH 1571H SAMPLE MIDTERM II PROBLEMS

October 25, 2019
INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 3.1-3.6, 4.1-4.6

1. The sum of two positive numbers is 36 . What is the smallest possible value of the sum of their squares?
2. Find the global maximum and global minimum of the function $f(x)=2 x^{3}-3 x^{2}-12 x$ on the closed interval $[-2,3]$. Find the interval that $f(x)$ is concave upward.
3. Sand falling at the rate of $3 f t^{3} / \mathrm{min}$ forms a conical pile whose radius r always equals twice the height h. Find the rate at which the height is changing at the instant when the height is 10 feet. Recall that the volume V of a right circular cone is $V=\frac{1}{3} \pi r^{2} h$.
4. Compute the indicated derivatives of the functions $y=f(x)$.
a) $f(x)=\frac{\sec (x)}{1+\tan (x)}$
b) $f(x)=\frac{(x-1)^{4}}{\left(x^{2}+2 x\right)^{5}}$
c) $f(x)=\sqrt{x+\sqrt{x+\sqrt{x}}}$
d) $f(x)=\sin (5 x) \cos (3 x)$
5. Let y be a function of x such that $x^{2} y-y^{3}=1$ and the derivatives y^{\prime} and $y^{\prime \prime}$ exist at $x=0$.
a) If $y(0)=-3$, compute $y^{\prime}(0)$.
b) Compute $y^{\prime \prime}(0)$.
6. Find the equation of the tangent line to the curve $x^{3}+y^{3}=6 x y$ at the point $(3,3)$.
7. Show that $\tan (x)>x$ for $0<x<\pi / 2$.
8. Find, correct to six decimal places, the root of the equation $3 \cos (x)=x+1$.
9. Find the dimensions of the isosceles triangle of the largest area that can be inscribed in a circle of radius r.
