MATH 2283 SAMPLE MIDTERM II March 24, 2013 INSTRUCTOR: Anar Akhmedov

The midterm exam II will cover the sections 3.1 - 3.8.

- 1. Let s_n be the sequence defined recursively by $s_1 = 2$, $s_n = \sqrt{6 + s_{n-1}}$. Determine whether the sequence s_n converges or diverges. If s_n converges, compute its limit.
- 2. Suppose the sequence a_n is monotonic. Prove that a_n converges if and only if it is bounded.
- 3. Determine whether each of the following sequences converges or diverges. If a sequence converges, compute its limit. If a sequences diverges, state whether it diverges to $+\infty$, $-\infty$, or neither.

a)
$$a_n = e^{10/n}$$

b) $a_n = \frac{5^{n+3}}{7^n}$
c) $a_n = n^3 e^{-n}$
d) $a_n = (1 + \frac{3}{n})^n$
e) $a_n = \frac{n^3 - n^2 - n - 1}{10n^2 + n + 1}$
f) $a_n = \frac{n + \cos(n)}{2n - \sin(2n)}$
g) $a_n = n^2(1 - \cos(1/n))$

- 4. Prove that a sequence a_n is Cauchy if and only if it is convergent.
- 5. Assume that a_n and b_n are Cauchy sequences. Use the definition of Cauchy sequence to show that the sequence c_n defined by $c_n = |a_n b_n|$ is also Cauchy.