MATH 1272 SAMPLE MIDTERM III PROBLEMS

April 13, 2015
INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 11.1-11.9, 12.1-12.3.

1. Determine whether each of the following sequences converges or diverges. If a sequence converges, compute its limit. If a sequences diverges, state whether it diverges to $+\infty$, $-\infty$, or neither. Show your reasoning.
a) $a_{n}=\frac{\ln (n)}{\sqrt{n}}$
b) $a_{n}=\left(1+\frac{3}{n}\right)^{5 n}$
c) $a_{n}=(-1)^{n} \sqrt[n]{n}$
d) $a_{n}=\frac{\sin (2 n)}{1+\sqrt{n}}$
e) $a_{n}=\frac{e^{n}-e^{-n}}{e^{-2 n}-e^{2 n}}$
2. Let a_{n} be the sequence defined recursively by $a_{1}=0, a_{n+1}=\frac{1}{4}\left(1+a_{n}\right)$. Determine whether the sequence a_{n} converges or diverges. If a_{n} converges, compute its limit.
3. If p is a positive constant, show that the improper integral $\int_{1}^{\infty} \frac{d x}{x^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
4. Establish the convergence or divergence of the following series by using the comparision test.
a) $\sum_{n=1}^{\infty} \frac{1}{5^{n}-n}$
b) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$
5. Establish the convergence or divergence of the following series by using the integral test.
a) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{-n^{3}}}$
b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+6 n+13}$
6. Find a power series repersantation for the following functions and determine the interval of convergence.
a) $f(x)=\frac{1}{(1+x)^{2}}$
b) $g(x)=\frac{1}{(1+x)^{3}}$
7. Show that if the vectors $u+v$ and $u-v$ are orthogonal, then the vectors u and v must have the same length.
8. Find an equation of the set of all points equidistant from the points $A=(-1,5,3)$ and $B=(6,2,-2)$. Describe the set.
