MATH 1272 SAMPLE MIDTERM III PROBLEMS April 13, 2015 INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 11.1 - 11.9, 12.1 - 12.3.

- 1. Determine whether each of the following sequences converges or diverges. If a sequence converges, compute its limit. If a sequences diverges, state whether it diverges to $+\infty$, $-\infty$, or neither. Show your reasoning.
 - a) $a_n = \frac{\ln(n)}{\sqrt{n}}$ b) $a_n = (1 + \frac{3}{n})^{5n}$ c) $a_n = (-1)^n \sqrt[n]{n}$ d) $a_n = \frac{\sin(2n)}{1 + \sqrt{n}}$ e) $a_n = \frac{e^n - e^{-n}}{e^{-2n} - e^{2n}}$
- 2. Let a_n be the sequence defined recursively by $a_1 = 0$, $a_{n+1} = \frac{1}{4}(1+a_n)$. Determine whether the sequence a_n converges or diverges. If a_n converges, compute its limit.
- 3. If p is a positive constant, show that the improper integral $\int_{1}^{\infty} \frac{dx}{x^{p}}$ converges if p > 1 and diverges if $p \le 1$.
- 4. Establish the convergence or divergence of the following series by using the comparision test.
 - a) $\sum_{n=1}^{\infty} \frac{1}{5^n n}$ b) $\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^n}$
- 5. Establish the convergence or divergence of the following series by using the integral test.

a)
$$\sum_{n=1}^{\infty} \frac{n^2}{e^{-n^3}}$$

b) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 6n + 13}$

6. Find a power series repersantation for the following functions and determine the interval of convergence.

a)
$$f(x) = \frac{1}{(1+x)^2}$$

b)
$$g(x) = \frac{1}{(1+x)^3}$$

- 7. Show that if the vectors u + v and u v are orthogonal, then the vectors u and v must have the same length.
- 8. Find an equation of the set of all points equidistant from the points A = (-1, 5, 3) and B = (6, 2, -2). Describe the set.