MATH 1571H SAMPLE FINAL PROBLEMS

December 8, 2013
INSTRUCTOR: Anar Akhmedov

The final exam will cover the Sections 1.5, 1.6, 2.2-2.6, 3.1-3.6, 4.1-4.6, 5.2-5.4, 6.26.7, 7.2-7.5, 8.1-8.5, 9.1-9.5.

1. Find the limit, if it exists. If the limit does not exist, explain why.
a) $\lim _{x \rightarrow-1} \frac{2 x^{2}+3 x+1}{x^{2}-2 x-3}$
b) $\lim _{x \rightarrow 0} \frac{\sin (\sin (\sin (x)))}{x}$
c) $\lim _{x \rightarrow 0} \frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}$
d) $\lim _{x \rightarrow \infty}\left(\sqrt{9 x^{2}+x}-3 x\right)$
2. Use the Mean Value Theorem to prove that $|\sin (a)-\sin (b) \leq|a-b|$ for all a and b.
3. The difference of two numbers is 20 . What is the smallest possible value of the product of these numbers?
4. We want to construct a box whose base length is 3 times the base width. The material used to build the top and bottom cost $10 / f t^{2}$ and the material used to build the sides cost $6 / f t^{2}$. If the box must have a volume of $50 f t^{3}$ determine the dimensions that will minimize the cost to build the box.
5. Compute the integrals. Note that some of these integrals are indefinite and some definite.
a) $\int \frac{\sin (x)}{\cos (x)^{1 / 3}} d x$
b) $\int_{0}^{1 / 2} \frac{x^{2}-1}{x^{4}-1} d x$
c) $\int \sin (x) \sec ^{2}(\cos (x)) d x$
d) $\int x^{2} \sqrt{x+2} d x$
6. Use the Fundamental Theorem of Calculus to find the derivatives of the following functions.
a) $\int_{\cos (x)}^{\sin (x)} \ln (2 t+1) d t$
b) $\int_{x}^{x^{2}} e^{t^{2}} d t$
7. Find the solution of the differential equation $\frac{d y}{d x}=\frac{6 x^{2}}{2 y+\cos (y)}$ that satisfies the initial condition $y(1)=0$.
8. Given the function $y=f(x)=5 x^{2}+1$ and the partition of the interval $[-1,1]$ into 5 subintervals of equal length. Compute the Riemann sum using the left endpoints of these subintervals for your sample points.
9. Find the area of the region enclosed by $x=-y^{2}+10$ and $x=(y-2)^{2}$.

10 . Find the exact length of the curve $y^{2}=x$, where $0 \leq x \leq 1$ and $y \geq 0$.
11. Find the volume of the solid obtained by rotating the region bounded by $x=(y-2)^{2}$ and $y=x$ about the line $y=-1$-axis.
12. Set up an integral for the volume of the solid obtained by rotating the circle $x^{2}+y^{2}=r^{2}$ about the x-axis. Compute the volume of this solid.
13. A 20 ft cable weighs 80 lbs and hangs from the ceiling of a building without touching the floor. Determine the work that must be done to lift the bottom end of the chain all the way up until it touches the ceiling.

