MATH 1571H SAMPLE MIDTERM III PROBLEMS

November 22, 2014
INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 5.2-5.4, 6.2-6.7, 7.2-7.5.

1. Show that $\cos \left(x^{2}\right) \geq \cos (x)$ for $0 \leq x \leq 1$. Deduce that $\int_{0}^{\pi / 6} \cos \left(x^{2}\right) d x \geq \frac{1}{2}$.
2. Compute the integrals. Note that some of these integrals are indefinite and some definite.
a) $\int_{0}^{\pi / 2} \frac{\cos (x) \sin (x)}{3+\cos ^{2}(x)} d x$
b) $\int \frac{(x+1)^{2}}{\left(1-x^{2}\right)^{2}} d x$
c) $\int \frac{e^{x}}{e^{x}+1} d x$
d) $\int x^{3} \sqrt{x^{2}+1} d x$
3. Use the Fundamental Theorem of Calculus to find the derivatives of the following functions.
a) $\int_{x}^{3} \sqrt{t^{3}+1} d t$
b) $\int_{1}^{5 x^{2}-1} \sin \left(t^{3}\right) d t$
c) $\int_{1}^{x^{4}} \sec (t) d t$
4. Find the solution of the differential equation $\frac{d y}{d x}=\frac{x}{y}$ that satisfies the initial condition $y(0)=-3$.
5. Given the function $y=f(x)=1 / x$ and the partition $P_{3}: 1,2,3,4$ of the interval $[1,4]$. Compute the upper Riemann sum U_{3} and the lower Riemann sum L_{3}.
6. Find the area enclosed by the line $y=x-1$ and the parabola $y^{2}=2 x+6$.
7. Find the exact length of the curve $y^{2}=4(x+4)^{3}$, where $0 \leq x \leq 2$ and $y>0$.
8. Find the volume of the solid obtained by rotating the region bounded by the curves $y=\frac{1}{4} x^{2}$ and $y=5-x^{2}$ about the x-axis.
9. Set up an integral for the volume of the solid torus (the donut-shaped solid) with radii r and R obtained by rotating the circle $(x-R)^{2}+y^{2}=r^{2}$ about the y-axis. Compute the volume of the torus.
10. Let S be a solid with a circular base of radius r. Parallel cross-sections of S perpendicular to the base are equilateral triangles. Find the volume of the solid S.
