MATH 1571H SAMPLE MIDTERM III PROBLEMS

November 22, 2014 INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 5.2 - 5.4, 6.2 - 6.7, 7.2 - 7.5.

- 1. Show that $\cos(x^2) \ge \cos(x)$ for $0 \le x \le 1$. Deduce that $\int_0^{\pi/6} \cos(x^2) dx \ge \frac{1}{2}$.
- 2. Compute the integrals. Note that some of these integrals are indefinite and some definite.

a)
$$\int_0^{\pi/2} \frac{\cos(x)\sin(x)}{3 + \cos^2(x)} dx$$

b)
$$\int \frac{(x+1)^2}{(1-x^2)^2} dx$$

c)
$$\int \frac{e^x}{e^x + 1} dx$$

d)
$$\int x^3 \sqrt{x^2 + 1} dx$$

3. Use the Fundamental Theorem of Calculus to find the derivatives of the following functions.

a)
$$\int_{x}^{5} \sqrt{t^{3} + 1} dt$$

b)
$$\int_{1}^{5x^{2} - 1} \sin(t^{3}) dt$$

c)
$$\int_{1}^{x^{4}} \sec(t) dt$$

- 4. Find the solution of the differential equation $\frac{dy}{dx} = \frac{x}{y}$ that satisfies the initial condition y(0) = -3.
- 5. Given the function y = f(x) = 1/x and the partition $P_3 : 1, 2, 3, 4$ of the interval [1, 4]. Compute the upper Riemann sum U_3 and the lower Riemann sum L_3 .
- 6. Find the area enclosed by the line y = x 1 and the parabola $y^2 = 2x + 6$.
- 7. Find the exact length of the curve $y^2 = 4(x+4)^3$, where $0 \le x \le 2$ and y > 0.
- 8. Find the volume of the solid obtained by rotating the region bounded by the curves $y = \frac{1}{4}x^2$ and $y = 5 - x^2$ about the x-axis.
- 9. Set up an integral for the volume of the solid torus (the donut-shaped solid) with radii r and R obtained by rotating the circle $(x R)^2 + y^2 = r^2$ about the y-axis. Compute the volume of the torus.

10. Let S be a solid with a circular base of radius r. Parallel cross-sections of S perpendicular to the base are equilateral triangles. Find the volume of the solid S.