MATH 1572H SAMPLE MIDTERM III PROBLEMS

April 22, 2018
INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 13.7, 13.8, 14.1-14.4, 14.6, 15.1-15.4, 16.1, 16.3, 16.2, 16.4, 16.5

1. Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} \frac{n(x+2)^{n}}{3^{n+1}}$
2. Determine whether each of the following series converges or diverges. If it is convergent, find its sum. Show your reasoning.
a) $\sum_{n=0}^{\infty} \frac{3^{n}}{\pi^{n}}$
b) $\sum_{n=1}^{\infty} \arctan (n)$
c) $\sum_{n=1}^{\infty} \frac{3}{n(n+1)}$
3. Determine whether the given series converges absolutely, converges conditionally, or diverges. Show your reasoning.
a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n} n!}{n^{n}}$
b) $\sum_{n=1}^{\infty}(-1)^{n} \sin ^{2}(1 / n)$
4. Establish the convergence or divergence of the following series by using the comparision test.
a) $\sum_{n=1}^{\infty} \frac{1}{5^{n}-n}$
b) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$
5. Establish the convergence or divergence of the following series by using the integral test.
a) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n^{3}}}$
b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+6 n+13}$
6. Use power series to solve the differential equation $y^{\prime \prime}=x y^{\prime}$.
7. Identify the type of conic section whose equation is $x^{2}=4 y-2 y^{2}$. Find the vertices and foci.
8. Find the area enclosed by one loop of the six-leaved rose $r^{2}=2 \cos (3 \theta)$.
9. Find the area that lies outside $r=2 \sin (\theta)$ and inside $r=2 \sin (2 \theta)$.
10. Find the length of the polar curve $r=\theta, 0 \leq \theta \leq 1$. Sketch the given curve.
