MATH 1572H SAMPLE MIDTERM PROBLEMS

February 9, 2020

INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 10.1 - 10.9, 11.1 - 11.3

1. Compute the following integrals. Note that some of these integrals are indefinite and some definite.

a)
$$\int_{1}^{e} \frac{\ln(x)^{3}}{x} dx$$

b)
$$\int sec^5(x)tan^3(x)dx$$

c)
$$\int_0^4 \sqrt{16 - x^2} dx$$

$$d) \int \frac{x^5 + \sin(x)}{e^{x^2}} dx$$

e)
$$\int \frac{x}{x^4 + 1} dx$$

$$f) \int \frac{1}{x^2 + 3x - 4} dx$$

g)
$$\int \sin(4x)\cos(6x)dx$$

2. Evaluate the following integrals

a)
$$\int sec^3(x)dx$$

b)
$$\int e^x \sin(x) dx$$

3. Evaluate the following integrals

a)
$$\int \frac{\sqrt{49x^2 - 1}}{x} dx$$

b)
$$\int \frac{x^2 - 29x + 5}{(x - 4)^2(x^2 + 3)} dx$$

4. Using n = 6 and Simpson's rule approximate the value of the given integral.

$$\int_0^3 e^{x^2} dx$$

5. Use Pappus's Theorems to find the volume and the surface area of the torus (doughnut) generated by revolving a circle of radius r about a line in its plane at a distance R from its center, where R > r.

1