MATH 1572H SAMPLE MIDTERM II PROBLEMS

March 12, 2018
INSTRUCTOR: Anar Akhmedov

The midterm exam will cover the Sections 12.1-12.4, 13.1-13.6.

1. Find the limit, if it exists. If the limit does not exist, explain why.
a) $\lim _{x \rightarrow 0} \frac{e^{x}-\sin (x)-1}{x^{2}-x^{3}}$
b) $\lim _{x \rightarrow 0^{+}}\left(e^{x}-1\right)^{x}$
2. Determine whether each of the following sequences converges or diverges. If a sequence converges, compute its limit. If a sequences diverges, state whether it diverges to $+\infty$, $-\infty$, or neither. Show your reasoning.
a) $a_{n}=\frac{\ln (n)}{\sqrt{n}}$
b) $a_{n}=\left(1+\frac{3}{n}\right)^{5 n}$
c) $a_{n}=(-1)^{n} \sqrt[n]{n}$
3. Let a_{n} be the sequence defined recursively by $a_{1}=0, a_{n+1}=\frac{1}{4}\left(1+a_{n}\right)$. Determine whether the sequence a_{n} converges or diverges. If a_{n} converges, compute its limit.
4. If p is a positive constant, show that the improper integral $\int_{1}^{\infty} \frac{d x}{x^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
5. Establish the convergence or divergence of the following series by using the comparision test.
a) $\sum_{n=1}^{\infty} \frac{1}{5^{n}-n}$
b) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$
6. Establish the convergence or divergence of the following series by using the integral test.
a) $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{-n^{3}}}$
b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+6 n+13}$
