MATH 2283 SAMPLE MIDTERM II

March 12, 2018
INSTRUCTOR: Anar Akhmedov

The midterm exam II will cover the sections 3.1-3.8.

1. Let s_{n} be the sequence defined recursively by $s_{1}=2, s_{n}=\sqrt{6+s_{n-1}}$. Determine whether the sequence s_{n} converges or diverges. If s_{n} converges, compute its limit.
2. Suppose the sequence a_{n} is monotonic. Prove that a_{n} converges if and only if it is bounded.
3. Determine whether each of the following sequences converges or diverges. If a sequence converges, compute its limit. If a sequences diverges, state whether it diverges to $+\infty$, $-\infty$, or neither.
a) $a_{n}=e^{10 / n}$
b) $a_{n}=\frac{5^{n+3}}{7^{n}}$
c) $a_{n}=n^{3} e^{-n}$
d) $a_{n}=\left(1+\frac{3}{n}\right)^{n}$
e) $a_{n}=\frac{n^{3}-n^{2}-n-1}{10 n^{2}+n+1}$
f) $a_{n}=\frac{n+\cos (n)}{2 n-\sin (2 n)}$
g) $a_{n}=n^{2}(1-\cos (1 / n))$
4. Prove that a sequence a_{n} is Cauchy if and only if it is convergent.
5. Assume that a_{n} and b_{n} are Cauchy sequences. Use the definition of Cauchy sequence to show that the sequence c_{n} defined by $c_{n}=\left|a_{n}-b_{n}\right|$ is also Cauchy.
