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Boundary value problems of spaces of automorphic forms

by Adil Ali

Abstract

We apply some ideas of Bombieri and Garrett to construct natural self-adjoint

operators on spaces of automorphic forms whose only possible discrete spectrum is

λs = s(s− 1) for s in a subset of on-line zeros of an L-function, appearing as a compact

period of cuspidal-data Eisenstein series on GL4. These ideas have their origins in re-

sults of Hejhal and Colin de Verdiére. In parallel with the GL(2) case, the corresponding

pair-correlation and triple-correlation results limit the fraction of on-the-line zeros that

can appear in this fashion.
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Chapter 1

Introduction

We apply the spectral theory of automorphic forms to the study of zeros of L-

functions. A refined version of the spectral theory of automorphic forms plausibly has

bearing on zeros of automorphic L-functions and other periods. This is powerfully

illustrated by the following example, which is a much simpler analogue of our present

result. In 1977, H. Haas [Haas 1977] attempted to numerically compute eigenvalues λ

of the invariant Laplacian

∆ = y2(
∂2

∂x2
+

∂2

∂y2
)

on SL2(Z)\H, parametrized as λw = w(w − 1). Haas listed the w-values, intending to

solve the differential equation

(∆− λw)u = 0

H. Stark and D. Hejhal [Hejhal 1981] observed zeros of ζ and of an L-function on the list.

This suggested an approach to the Riemann Hypothesis, hoping that zeros w of ζ would

be in bijection with eigenvalues λw = w(w − 1) of ∆. Since a suitable version of ∆ is a

self-adjoint, non-positive operator, these eigenvalues would necessarily be non-positive

also, forcing either Re(w) = 1
2 or w ∈ [0, 1]. Hejhal attempted to reproduce Haas’ list

with more careful computations, but the zeros failed to appear on Hejhal’s list. Hejhal

realized that Haas had solved the inhomogeneous equation

(∆− λw)u = δafc
ω

allowing a multiple of an automorphic Dirac δafc
ω on the right hand side. Here ω is a cube

root of unity, and δafc
ω (f) = f(ω) for an SL2(Z)-automorphic waveform f . However,
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since solutions uw of (∆ − λ)u = δafc
ω are not genuine eigenfunctions of the Laplacian,

this no longer implied non-positivity of the eigenvalues.

The natural question was whether the Laplacian could be modified so as to exhibit

a fundamental solution as a legitimate eigenfunction for the perturbed operator. That

is, one would want a variant ∆′ for which

(∆′ − λw)uw = 0 ⇐⇒ (∆− λw)uw = C · δafc
ω

Because of Y. Colin de Verdière’s argument for meromorphic continuation of Eisenstein

series [CdV 1981], it was anticipated that ∆′ = ∆Fr would be a fruitful choice for the

Friedrichs extension of a suitably chosen restriction. ∆Fr is self-adjoint, and therefore

symmetric. This gave glimpses of progress toward the Riemann hypothesis.

Friedrichs extensions have the desired properties and they played an essential role

in another story, namely Colin de Verdière’s meromorphic continuation of Eisenstein

series, though there, the distribution that appeared was the evaluation of constant

term at height y = a. There, the spaces of interest were the orthogonal complements

L2(Γ\H)a to the spaces of pseudo-Eisenstein series with test function data supported

on [a,∞). ∆a was ∆ with domain C∞c (Γ\H) and constant term vanishing above height

y = a. ∆Fr was the Friedrichs extension of ∆a to a self-adjoint operator on L2(Γ\H)a.

In this way, a Friedrichs extension attached to the distribution on Γ\H given by

Ta(f) = (cP f)(ia)

has all eigenfunctions inside a +1-index global automorphic Sobolev space, defined as

the completion of C∞c (Γ\H) with respect to the +1-Sobolev norm

|f |H1 = 〈(1−∆)f, f〉
1
2

The Dirac δ on a two-dimensional manifold lies in a global Sobolev space H−1−ε with

index −1−ε for all ε > 0, but not in H−1, so by elliptic regularity, a fundamental solution

lies in the +1− ε-Sobolev space. This implies that a fundamental solution could not be

an eigenfunction for any Friedrichs extension of a restriction of ∆ described by boundary

conditions.

The automorphic Dirac δafc
ω is an example of a period functional. Periods of auto-

morphic forms have been studied extensively: after all, Mellin transforms of cuspforms
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are noncompact periods. Hecke and Maass were aware of Eisenstein series periods: in

effect, Hecke treated finite sums over Heegner points attached to negative fundamental

discriminants, and Maass treated compact geodesic periods attached to positive funda-

mental discriminants. A simple example is given by

Es(i) =
ζQ(i)(s)

ζQ(2s)

More generally, let ` a quadratic field extension of a global field k of characteristic not

2. Let G = GL2(k), and let H be a copy of `× inside G. The period of an Eisenstein

series Es =
∑

γ∈Pk\Gk ϕ(γg) along H is defined by the compactly-supported integral

period of Es along H =

∫
ZAHk\HA

Es

Via Iwasawa-Tate integrals, ∫
ZAHk\HA

Es =
ξ`(s)

ξk(2s)

Noncompact periods have been studied extensively. Let G be a reductive group over

a number field F , and let H ⊂ G be a subgroup obtained as the fixed point set of an

involution θ. [Jacquet-Lapid-Rogowski 1997] studied the period integral

ΠH(ϕ) =

∫
H(F )\H(A)

ϕ(h) dh

The authors use a regularization procedure and a relative trace formula to obtain an

Euler product for Π(E), where E is an Eisenstein series.

This paper examines the discrete spectrum of a Friedrichs extension ∆̃θ associated to

a compactly-supported GL4(Z)-invariant distribution θ̃ on G = GL(4), whose projection

θ to the subspace of L2(GL4(Z)\GL4(R)/O4(R)) spanned by 2, 2 pseudo-Eisenstein

series with fixed cuspidal data f and f and the residue of this Eisenstein series, a

Speh form. This distribution lies in the −1 index Sobolev space. We prove that the

parameters w of the discrete spectrum λw = w(w − 1), if any, of ∆̃θ interlace with

the zeros of the constant term of the 2, 2 Eisenstein series EP
f,f,s

where f is a GL(2)

cuspform. Such spacing is too regular to be compatible with the corresponding pair-

correlation and triple-correlation conjectures, and this powerfully constrains the number

of zeros w of θE1−w appearing in the discrete spectrum of ∆̃θ. In particular, the discrete

spectrum is presumably sparse.



Chapter 2

Spectral Theory

We follow [Langlands 1976], [MW 1990], [MW 1989], and [Garrett 2012]. Fix, once

and for all, K∞ = O4(R), and Kv = GL4(Zv) for non-archimedean places v. Let z be

the center of the enveloping algebra of G∞ = GL4(R).

Definition 1. Given a parabolic P in G = GL4 and a function f on ZAGk\GA, the

constant term of f along P is

cP f(g) =

∫
Nk\NA

f(ng) dn

where N is the unipotent radical of P .

We will let k = Q throughout. An automorphic form is a cuspform if, for all

parabolics P , the constant term along P is zero. This is the Gelfand condition (in the

weak sense). Since the right GA-action commutes with taking constant terms, the space

of functions L2
cusp(ZAGk\GA) satisfying the Gelfand condition is GA-stable, and so is a

sub-representation of L2(ZAGk\GA). We note that there are non-Kv-finite vectors in

L2(ZAGk\GA). R. Godement, A. Selberg, I. Gelfand and I. I. Piatetski-Shapiro showed

that integral operators attached to test functions on L2
cusp(ZAGk\GA) are compact.

Specifically, for ϕ ∈ C∞c (GA) which is right K-invariant, the operator

f → ϕ · f

gives a compact operator from L2
cusp(ZAGk\GA) to itself. Here

(ϕ · f)(y) =

∫
ZAGk\GA

ϕ(x) · f(yx) dx

4
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By the spectral theorem for compact operators, this sub-representation decomposes

into a direct sum of irreducibles, each with finite multiplicity. The remainder of L2 is

decomposed as follows.

We classify non-cuspidal automorphic forms according to their cuspidal support, i.e.

the smallest parabolics on which they have non-zero constant term. In GL(4) there are

four associate classes of proper parabolic subgroups. There is P 4 = GL4, P 2,1,1, P 1,2,1,

P 1,1,2, the maximal proper parabolic subgroups P 3,1, P 1,3 and P 2,2, and the standard

minimal parabolic subgroup P 1,1,1,1.

Definition 2. A pseudo-Eisenstein series is a function of the form

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γ · g)

where ϕ is a continuous function on ZANAMk\GA with cuspidal data on the Levi com-

ponent.

For example, given the 2, 2 parabolic, the function out of which the pseudo-Eisenstein

series is constructed is

ϕφ,f1⊗f2(

(
A ∗
0 D

)
) = φ(

∣∣∣∣detA

detD

∣∣∣∣2) · f1(A) · f2(D)

where φ is a compactly-supported, smooth function on R and f1 and f2 are cuspforms

on GL2 with trivial central character. For the 3, 1 parabolic, consider the function

ϕφ,f1⊗f2(

(
A ∗
0 d

)
) = φ(

∣∣∣∣detA

d3

∣∣∣∣) · f1(A)

where A ∈ GL3 and f1 is a cuspform on GL3. For the 2, 1, 1 parabolic, let

ϕf,φ1,φ2(


A 0 0

0 b 0

0 0 c

) = f(A) · φ1(
detA

b2
) · φ2(

detA

c2
)

The 1, 1, 1, 1-pseudo-Eisenstein series is discussed later.

Proposition 1. In the following, abbreviate ϕφ,f1⊗f2 by ϕ. For any square-integrable

automorphic form f and any pseudo-Eisenstein series ΨP
ϕ , with P a parabolic subgroup

〈f,ΨP
ϕ 〉ZAGk\GA = 〈cP f, ϕ〉ZANP

A M
P
k \GA
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Proof. The proof involves a standard unwinding argument. Let NP and MP denote

the unipotent radical and Levi component of P , respectively. Observe that

〈f,ΨP
ϕ 〉ZAGk\GA =

∫
ZAGk\GA

f(g) ·ΨP
ϕ (g) dg =

∫
ZAGk\GA

f(g)(
∑

γ∈Pk\Gk

ϕ(γ · g)) dg

This is

=

∫
ZAPk\GA

f(g)ϕ(g) dg =

∫
ZANkMk\GA

f(g)ϕ(g) dg

=

∫
ZANAMk\GA

∫
Nk\NA

f(ng)ϕ(ng) dn dg

=

∫
ZANAMk\GA

(

∫
Nk\NA

f(ng) dn)ϕ(g) dg

= 〈cP f, ϕ〉ZANP
A M

P
k \GA

From this adjointness relation, we have the following

Corollary 1. A square-integrable automorphic form is a cuspform if and only if it is

orthogonal to all pseudo-Eisenstein series.

Since the critical issues arise at the archimedean place, we consider the real Lie

group. To this end, let G = PGL4(R), Γ = PGL4(Z).

Definition 3. The standard minimal parabolic B is defined as the subgroup

B = P 1,1,1,1

of upper-triangular matrices, with standard Levi component A, unipotent radical N , and

Weyl group W , the latter represented by permutation matrices.

Let A+ be the image in G of positive diagonal matrices. Consider characters on B

of the form

χ = χs : (


a1 ∗ ∗ ∗
0 a2 ∗ ∗
0 0 a3 ∗
0 0 0 a4

) = |a1|s1 · |a2|s2 · |a3|s3 · |a4|s4
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For the character to descend to PGLn, necessarily s1 + s2 + s3 + s4 = 0.

Definition 4. The standard spherical vector is

ϕsph
s (pk) = χs(p)

and the spherical Eisenstein series is

Es(g) =
∑

γ∈B∩Γ\Γ

ϕsph
s (γ · g)

The spherical Eisenstein series is convergent for Re(s) � 1 and meromorphically

continued to an entire function of s as in [Langlands 544, Appendix 1]. The function

f → cBf(g) is left N(B ∩ Γ)-invariant.

Recall that for ϕ ∈ C∞c (N(B ∩ Γ)\G)K ≈ C∞c (A+), letting 〈, 〉X be the pairing of

distributions and test functions on a space X, the pseudo-Eisenstein series Ψϕ(g) enters

the adjunction relation

〈cBf, ϕ〉N(B∩Γ)\G = 〈f,Ψϕ〉Γ\G

That is, ϕ→ Ψϕ is adjoint to f → cBf . Then cBf = 0 is equivalent to

〈f,Ψϕ〉Γ\G = 0

for all ϕ.

Proposition 2. The pseudo-Eisenstein series Ψϕ admits a W -symmetric expansion as

an integral of Eisenstein series. That is,

Ψϕ =
1

|W |
1

(2πi)dima

∫
ρ+ia∗

Es · 〈Ψϕ, E2ρ−s〉Γ\G ds

Proof. To decompose the pseudo-Eisenstein series Ψϕ as an integral of minimal-parabolic

Eisenstein series, begin with Fourier transform on the Lie algebra a ≈ Rn−1 of A+. Let

〈, 〉 : a∗×a→ R be the R-bilinear pairing of a with its R-linear dual a∗. For f ∈ C∞c (a),

the Fourier transform is

f̂(ξ) =

∫
a
e−i〈x,ξ〉f(x) dx

Fourier inversion is

f(x) =
1

(2π)dima

∫
a∗
ei〈x,ξ〉f̂(ξ) dξ
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Let exp : a→ A+ be the Lie algebra exponential, and log : A+ → a the inverse. Given

ϕ ∈ C∞c (A+), let f = ϕ ◦ exp be the corresponding function in C∞c (a). The (multiple)

Mellin transform Mϕ of ϕ is the Fourier transform of f :

Mϕ(iξ) = f̂(ξ)

Mellin inversion is Fourier inversion in these coordinates:

ϕ(expx) = f(x) =
1

(2π)dima

∫
a∗
ei〈ξ,x〉f̂(ξ) dξ =

1

(2π)dima

∫
a∗
ei〈ξ,x〉Mϕ(iξ) dξ

Extend the pairing 〈, 〉 on a∗ × a to a C-bilinear pairing on the complexification. Use

the convention

(exp)iξ = ei〈ξ,x〉 = e〈iξ,x〉

With a = expx ∈ A+, Mellin inversion is

ϕ(a) =
1

(2π)dima

∫
a∗
aiξMϕ(iξ) dξ =

1

(2πi)dima

∫
ia∗
asMϕ(s) ds

With this notation, the Mellin transform itself is

Mϕ(s) =

∫
A+

a−sϕ(a) da

Since ϕ is a test function, its Fourier-Mellin transform is entire on a∗ ⊗R C. Thus, for

any σ ∈ a∗, Mellin inversion can be written

ϕ(a) =
1

(2πi)dima

∫
σ+ia∗

asMϕ(s) ds

Identifying N(B ∩ Γ)\G/K ≈ A+, let g → a(g) be the function that picks out the

A+ component in an Iwasawa decomposition G = NA+K. For σ ∈ a+ suitable for

convergence, the following rearrangement is legitimate,

Ψϕ(g) =
∑

γ∈(B∩Γ)\Γ

ϕ(a(γ ◦ g)) =
∑

γ∈B∩Γ\Γ

1

(2πi)dima

∫
σ+ia∗

a(γg)sMϕ(s) ds

=
1

(2πi)dima

∫
σ+ia∗

( ∑
γ∈B∩Γ\Γ

a(γg)s
)
Mϕ(s) ds =

1

(2πi)dima

∫
σ+ia∗

Es(g)Mϕ(s) ds
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This does express the pseudo-Eisenstein series as a superposition of Eisenstein series,

as desired. However, the coefficients Mϕ are not expressed in terms of Ψϕ itself. This

is rectified as follows. Letting ρ denote the half-sum of positive roots,

〈f,Es〉Γ\G =

∫
Γ\G

f(g)Es(g) =

∫
B∩Γ\G

f(g)a(g)s dg

=

∫
N(B∩Γ)\G

∫
N∩Γ\N

f(ng)a(ng)s dg =

∫
N(B∩Γ)\G

cBf(g)a(g)s dg

=

∫
A+

cBf(a)as
da

a2ρ
=

∫
A+

cBf(a)a−(2ρ−s) da = M cBf(2ρ− s)

That is, with f = Ψϕ,

〈Ψϕ, Es〉Γ\G = M cBΨϕ(2ρ− s)

On the other hand, a similar unwinding of the pseudo-Eisenstein series, and the recol-

lection of the constant term cBEs, gives

〈Ψϕ, Es〉Γ\G =

∫
B∩Γ\G

ϕ(g)Es(g) dg =

∫
N(B∩Γ)\G

∫
N∩Γ\N

ϕ(ng)Es(ng) dg

=

∫
N(B∩Γ)\G

ϕ(g)cBEs(g) dg =

∫
A+

ϕ(a)cBEs(a)
da

a2ρ

=

∫
A+

ϕ(a)
∑
w

cw(s)aw·s
da

a2ρ

=
∑
w

cw(s)

∫
A+

ϕ(a)a−(2ρ−w·s) da =
∑
w

cw(s)Mϕ(2ρ− w · s)

Combining these,

M cBΨϕ(2ρ− s) = 〈Ψϕ, Es〉Γ\G =
∑
w

cw(s)Mϕ(2ρ− w · s)

Replacing s by 2ρ− s, noting that 2ρ− w · (2ρ− s) = w · s,

M cBΨϕ(s) =
∑
w

cw(2ρ− s)Mϕ(w · s)

To convert the expression

Ψϕ(g) =
1

(2πi)dima

∫
σ+ia∗

Es(g)Mϕ(s) ds
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into a W -symmetric expression, to obtain an expression in terms of cBΨϕ, we must use

the functional equations of Es. However, σ + ia∗ is W -stable only for σ = ρ. Thus,

the integral over σ + ia∗ must be viewed as an iterated contour integral, and moved to

ρ+ ia∗.

Ψϕ =
1

|W |
∑
w

1

(2πi)dima∗

∫
ρ+ia∗

Ew·sMϕ(w · s) ds

=
1

|W |
1

(2πi)dima

∫
ρ+ia∗

Es
(∑

w

1

cw(s)
Mϕ(w · s)

)
ds

On ρ+ ia∗, we have 1
cw(s) = cw(2ρ− s). Therefore,∑

w

1

cw(s)
Mϕ(w · s) =

∑
w

cw(2ρ− s)Mϕ(w · s) = M cBΨϕ(s)

This gives the desired spectral decomposition,

Ψϕ =
1

|W |
1

(2πi)dima

∫
ρ+ia∗

Es ·M Ψϕ(s) ds

=
1

|W |
1

(2πi)dima

∫
ρ+ia∗

Es · 〈Ψϕ, E2ρ−s〉Γ\G ds

Proposition 3. The map f → (s → 〈f,Es〉) is an inner-product-preserving map from

the Hilbert-space span of the pseudo-Eisenstein series to its image in L2(ρ+ ia).

Proof. Let f ∈ C∞c (Γ\G), ϕ ∈ C∞c (N\G), and assume Ψϕ is orthogonal to residues of

Es above ρ. Using the expression for Ψϕ in terms of Eisenstein series,

〈Ψϕ, f〉 = 〈 1

|W |
1

(2πi)dima

∫
ρ+ia∗

〈Ψϕ, E2ρ−s〉 · Esds, f〉

=
1

|W |
1

(2πi)dima

∫
ρ+ia∗

〈Ψϕ, E2ρ−s〉 · 〈Es, f〉 ds

The map

Ψϕ → 〈Ψϕ, E2ρ−s〉

with s = ρ+ it and t ∈ a∗, produces functions

u(t) = 〈Ψϕ, Eρ−it〉
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satisfying

u(wt) = 〈Ψϕ, E2ρ−w·s〉 = 〈Ψϕ, Ew·(2ρ−s)〉 = 〈Ψϕ,
E2ρ−s

cw(2ρ− s)
〉

= cw(s) · u(t) for all w ∈W

since

cw(2ρ− s) = cw(s) =
1

cw(s)

on ρ+ ia∗.

Proposition 4. Any u ∈ L2(ρ + ia∗) satisfying u(wt) = cw(s) · u(t) for all w ∈ W is

in the image.

Proof. First, for compactly-supported u meeting this condition, we claim

Ψu =
1

|W |
1

(2πi)dima

∫
ρ+ia∗

u(t) · Eρ+it dt 6= 0

It suffices to show cBΨu is not 0. With s = ρ + it, the relation implies u(t)E2ρ−s is

invariant by W . Let

C = {t ∈ a∗ : 〈t, α〉 > 0 for all simple α > 0}

be the positive Weyl chamber in a∗, where 〈, 〉 is the Killing form transported to a∗ by

duality. Then

Ψu =
1

|W |
1

(2πi)dima

∫
ρ+ia∗

u(t) · Es dt =
1

(2πi)dima

∫
ρ+iC

u(t) · Es dt

Since u(tw) = u(t) · cw(ρ+ it), the constant term of Ψu is

cBΨu =
1

(2πi)dima

∫
ρ+ia∗

u(t) · as dt

This Fourier transform does not vanish for non-vanishing u.

Given G = GL4(R), Γ = GL4(Z), and K = O4(R), it is necessary to invoke the com-

plete spectral decomposition of L2(Γ\G/K), that cuspforms and cuspidal data Eisen-

stein series attached to non-minimal parabolic Eisenstein series attached to non-minimal

parabolics, and their L2 residues, as well as the minimal-parabolic pseudo-Eisenstein
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series, span L2(Γ\G/K). And we must demonstrate the orthogonality of integrals of

minimal-parabolic Eisenstein series to all other spectral components.

We now decompose the pseudo-Eisenstein series with cuspidal data. We carry this

out for the 3, 1 pseudo-Eisenstein series, 2, 2 pseudo-Eisenstein series, and 2, 1, 1 pseudo-

Eisenstein series with cuspidal data. This follows a similar pattern as the spectral

decomposition. Let P = P 3,1. We decompose P 3,1 and P 1,3 pseudo-Eisenstein series

with cuspidal support. The data for a P pseudo-Eisenstein series is smooth, compactly-

supported, and left ZAM
P
k N

P
A -invariant. For now, we assume that the data is spherical,

i.e. right K-invariant. This means that the function is determined by its behavior on

ZAM
P
k \MP

A . In contrast to the minimal parabolic case, this is not a product of copies of

GL1, so we can not simply use the GL1 spectral theory (Mellin inversion) to accomplish

the decomposition. Instead, this quotient is isomorphic to GL3(k)\GL3(A), so we will

use the spectral theory for GL3. If η is the data for a P 3,1 pseudo-Eisenstein series Ψη,

we can write η as a tensor product η = f ⊗ µ on

ZGL3(A)GL3(k)\GL3(A) · ZGL3(k)\ZGL3(A)

Saying that the data is cuspidal means that f is a cusp form. Similarly, the data

ϕ = ϕF,s for a P 2,1-Eisenstein series is the tensor product of a GL3 cusp form F and a

character χs = |.|s on GL1. We show that Ψf,η is the superposition of Eisenstein series

EF,s where F ranges over an orthonormal basis of cusp forms and s is on the critical

line.

Proposition 5. The pseudo-Eisenstein series Ψf,η admits a spectral decomposition

Ψf,η =
∑
F

∫
s
〈Ψf,η, EF,s〉 · EF,s ds

where the sum is over spherical cuspforms F on GL3(k)\GL3(A).

Proof. Using the spectral expansions of f and η,

η = f ⊗ η =
( ∑

cfms F

〈f, F 〉
)
·
( ∫

s
〈µ, χs〉 · χs ds

)
=

∑
cfms F

∫
s
〈ηf,µ, ϕF,s〉 · ϕF,s ds

So the pseudo-Eisenstein series can be re-expressed as a superposition of Eisenstein
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series

Ψf,η(g) =
∑

γ∈Pk\Gk

ηf,µ(γg)

=
∑

γ∈Pk\Gk

∑
cfms F

∫
s
〈ηf,µ, ϕF,s〉 · ϕF,s(γg) ds

=
∑

cfms F

∫
s
〈ηf,µ, ϕF,s〉

∑
γ∈Pk\Gk

ϕF,s(γg) ds

=
∑

cfms F

∫
s
〈ηf,µ, ϕF,s〉 · EF,s ds

The coefficient 〈η, ϕ〉GL3 is the same as the pairing 〈Ψη, Eϕ〉GL4 , since

〈Ψη, Eϕ〉 = 〈cP (Ψη), ϕ〉 = 〈η, ϕ〉

So the spectral decomposition is

Ψf,η =
∑

cfms F

∫
s
〈Ψf,η, EF,s〉 · EF,s ds

It now remains to show that pseudo-Eisenstein series for the associate parabolic, Q =

P 1,3 can also be decomposed into superpositions of P -Eisenstein series. Notice that in

the decomposition above, when we decomposed P -pseudo-Eisenstein series into genuine

P -Eisenstein series, we did not use the functional equation to fold up the integral,

as in the case of minimal parabolic pseudo-Eisenstein series. For maximal parabolic

Eisenstein series, the functional equation does not relate the Eisenstein series to itself,

but rather the Eisenstein series of the associate parabolic. We will use this functional

equation to obtain the decomposition of associate parabolic pseudo-Eisenstein series.

The functional equation is

EQF,s = bF,s · EPF,1−s

where bF,s is a meromorphic function that appears in the computation of the constant

term along P of the Q-Eisenstein series.

Proposition 6. The pseudo-Eisenstein series ΨQ
f,µ admits a spectral decomposition

ΨQ
f,µ =

∑
F

∫
s
〈ΨQ

f,µ, E
P
F,1−s〉 · |bF,1−s|2 · EPF,1−s
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where F ranges over an orthonormal basis of cuspforms.

Proof. We consider a Q-pseudo-Eisenstein series ΨQ
f,µ with cuspidal data. By the same

arguments used above to obtain the decomposition of P -pseudo-Eisenstein series, we

can decompose ΨQ
f,µ into a superposition of Q-Eisenstein series,

ΨQ
f,µ(g) =

∑
cfms F

∫
s
〈ηf,µ, ϕF,s〉 · EQF,s(g)

Now using the functional equation,

ΨQ
f,µ(g) =

∑
cfms F

∫
s
〈ΨQ

f,µ, bF,s · E
P
F,1−s〉 · bF,s · EPF,1−s

=
∑

cfms F

∫
s
〈ΨQ

f,µ, E
P
F,1−s〉 · |bF,s|2 · EPF,1−s

giving the proposition.

So we have a decomposition of Q-pseudo-Eisenstein series (with cuspidal data) into

a P -Eisenstein series (with cuspidal data). In order to use the functional equation we

did have to move some contours, but in this case there are no poles, so we did not pick

up any residues. Likewise, if η is the data for a P 2,1,1 pseudo-Eisenstein series Ψη, we

can write η as a tensor product η = f ⊗ µ1 ⊗ µ2 on

ZGL4(A)\ZGL2(A) × ZGL1(A) × ZGL1(A)

Similarly, the data ϕ = ϕF,s1,s2 for a P 2,1,1-Eisenstein series is the tensor product

of a GL2 cuspform and characters χs1 and χs2 on GL1. We show that Ψf,µ is the

superposition of Eisenstein series EF,s1,s2 where F ranges over an orthonormal basis of

cusp forms and s1 and s2 are on the vertical line.

Proposition 7. The 2, 1, 1 pseudo-Eisenstein series Ψf,µ1,µ2 admits a spectral expansion

Ψf,µ1,µ2 =
∑
F

∫
s1

∫
s2

〈ηf,µ1,µ2 , ϕF,s1,s2〉 · EF,s1,s2

where F ranges over an orthonormal basis of cuspforms.
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Proof. Using the spectral expansions of f and µ,

η = f ⊗ µ1 ⊗ µ2 =
( ∑

cfms F

〈f, F 〉 · F
)
·
( ∫

s1

〈µ1, χs1〉 · χs1 ds1

)
·
( ∫

s2

〈µ2, χs2〉 · χs2 ds2

)
=

∑
cfms F

∫
s1

∫
s2

〈ηf,µ1,µ2 , ϕF,s1,s2〉 · ϕF,s1,s2 ds1 ds2

Therefore, the pseudo-Eisenstein series can be re-expressed as a (double) superposition

of Eisenstein series.

Ψf,µ1,µ2 =
∑

γ∈Pk\Gk

ηf,µ1,µ2(γg)

=
∑

γ∈Pk\Gk

∑
cfms F

∫
s1

∫
s2

〈ηf,µ1,µ2 , ϕF,s1,s2〉 · ϕF,s1,s2(γg) ds1 ds2

=
∑

cfms F

∫
s1

∫
s2

〈ηf,µ1,µ2 , ϕF,s1,s2〉
∑

γ∈Pk\Gk

ϕF,s1,s2(γg) ds1 ds2

=
∑

cfms F

∫
s1

∫
s2

〈ηf,µ1,µ2 , ϕF,s1,s2〉 · EF,s1,s2(g)

Finally, if η is the data for a P 2,2 pseudo-Eisenstein series Ψη, we can write

ηf,g,µ = f ⊗ g ⊗ µ

on

ZGL4(A)/ZGL2(A)× ZGL2(A)

where f and g are cuspforms, and µ is a compactly-supported smooth function on

GL(1). Similarly, the data ϕ = ϕf1,f2,s for a P 2,2-Eisenstein series is the tensor product

of GL(2) cuspforms f1 and f2 and a character χs.

Proposition 8. The 2, 2 pseudo-Eisenstein series Ψη has a spectral expansion in terms

of 2, 2 Eisenstein series

Ψη =
∑
F1,F2

∫
s
〈ηf,g,µ, ϕF1,F2,s〉EF1,F2,s ds

where F1 and F2 are cuspforms on GL(2).
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Proof. Writing

η = f ⊗ g ⊗ µ =
( ∑

cfms F

〈f, F 〉 · F
)( ∑

cfms F

〈g, F 〉 · F
)
·
( ∫

s
〈µ, χs〉 · χs

)
=

∑
cfmsF1,F2

∫
s
〈ηf,g,µ, ϕF1,F2,s〉 · ϕF1,F2,s ds

As before, the corresponding pseudo-Eisenstein series will unwind

Ψη =
∑

γ∈Pk\Gk

ηf,g,µ(γg) =
∑

cfmsF1,F2

∫
s
〈ηf,g,µ, ϕF1,F2,s〉 · EF1,F2,s ds

Recall the construction of 2, 2 pseudo-Eisenstein series. Let φ ∈ C∞c (R) and let f

be a spherical cuspform on GL2 with trivial central character. Let

ϕ(

(
A B

0 D

)
) = φ(

∣∣∣detA

detD

∣∣∣2) · f(A) · f(D)

extending by right K-invariance to be made spherical. Define the P 2,2 pseudo-Eisenstein

series by

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γg)

We recall the construction of 2, 1, 1 pseudo-Eisenstein series. Let f be a spherical

cuspform on GL2(k)\GL2(A), and let φ1, φ2 ∈ C∞c (R). Let

ϕf,φ1,φ2(


A 0 0

0 b 0

0 0 c

) = f(A) · φ1(
detA

b2
) · φ2(

detA

c2
)

The 2, 1, 1 pseudo-Eisenstein series with this data is

Ψϕ =
∑

γ∈Pk\Gk

ϕf,φ1,φ2(γg)

Proposition 9. The pseudo-Eisenstein series Ψ2,2
ϕ is orthogonal to all other pseudo-

Eisenstein series in Sob(+1).
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Proof. Recall by [MW p.100] that

〈Ψ2,2
ϕ ,Ψ2,1,1

ψ 〉L2 = 0

Let us now check that they’re also orthogonal in the +1-Sobolev space. Note that

〈Ψ2,2
ϕ ,Ψ2,1,1

ψ 〉+1 = 〈Ψ2,2
ϕ ,Ψ2,1,1

ψ 〉L2 + 〈∆Ψ2,2
ϕ ,Ψ2,1,1

ψ 〉L2

Since the first summand is zero, it suffices to prove that the second is zero. To this end,

we rewrite the Casimir operator

Ω = Ω1 + Ω2 + Ω3 + Ω4

where

Ω1 =
1

2
H2

1,2 + E1,2E2,1 + E2,1E1,2

and

Ω2 =
1

2
H2

3,4 + E3,4E4,3 + E4,3E3,4

while

Ω3 =
1

4
H2

1,2,3,4

We let Ω4 be the remaining terms appearing in the expression of Casimir. We prove that

application of Ω to Ψϕ produces another function in the span of 2, 2 pseudo-Eisenstein

series. Being in the span of 2, 2 pseudo-Eisenstein series renders ΩΨϕ orthogonal to

all other non-associate pseudo-Eisenstein series. We will prove that when restricted to

G/K, Ω1 acts as the SL2-Laplacian on the cuspform f , Ω2 acts as the SL2-Laplacian

on f , while Ω3 acts as a second derivative on the test function. Indeed, let

Ω1 =
1

2
H2

1,2 + E1,2E2,1 + E2,1E1,2

where H1,2 = diag(1,−1, 0, 0) and Ei,j is the matrix with 1 in the ijth position and 0’s

elsewhere. We check how H1,2 acts on smooth functions on ϕ. Let

A =

(
a b

c d

)
D =

(
f g

h i

)
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Observe that

H1,2 · ϕ(

(
A ∗
0 D

)
) =

d

dt

∣∣∣∣
t=0

ϕ(


a b 0 0

c d 0 0

0 0 f g

0 0 h i

 ·


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1

)

This is

d

dt

∣∣∣∣
t=0

ϕ(


aet bet 0 0

cet det 0 0

0 0 f g

0 0 h i

) =
d

dt

∣∣∣∣
t=0

φ(
∣∣∣detA

detD

∣∣∣2) · f(

(
aet be−t

cet de−t

)
) · f(D)

Use Iwasawa coordinates on the upper left hand GL(2) block of the Levi component,

namely

nx1 =


1 x1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 my1 =


√
y1 0 0 0

0 1√
y1

0 0

0 0 1 0

0 0 0 1


As in the discussion for SL2(R),

(H1,2f)(nx1my1) = 2y1
∂

∂y1
f(nx1my1)

Therefore, letting ∆1 be Ω1 restricted to G/K, we see that the effect of ∆1 on the

cuspform f is just

∆1(f) = y2
1(
∂2

∂x2
1

+
∂2

∂y2
1

)f = λf · f

Therefore,

∆1(ϕφ,f,f ) = ϕφ,λff,f = λf · ϕφ,f,f

A similar argument which uses H3,4, E3,4 and E4,3 as the standard basis in the lower

right 2× 2 block, shows that, for ∆2 the restriction of Ω2 to smooth functions on G/K,

∆2(ϕφ,f,f ) = ϕφ,f,f = λfϕφ,λff,f
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It remains to check the effect of Ω3 = 1
4H

2
1,2,3,4. Observe that

H1,2,3,4ϕ(


a b 0 0

c d 0 0

0 0 f g

0 0 h i

) =
d

dt

∣∣∣∣
t=0

ϕ(


a b 0 0

c d 0 0

0 0 f g

0 0 h i

 ·


et 0 0 0

0 et 0 0

0 0 e−t 0

0 0 0 e−t

)

Yet this is just

=
d

dt

∣∣∣∣
t=0

ϕ(


aet bet 0 0

cet det 0 0

0 0 fe−t ge−t

0 0 he−t ie−t

)

Which gives

=
d

dt

∣∣∣∣
t=0

φ(
etdetA

e−tdetD
) · f(

(
aet bet

cet det

)
) · f(

(
fe−t ge−t

he−t ie−t

)
) = 2 · φ′ · f(A) · f(D)

since both f and f have trivial central character. Therefore, the effect of 1
4H1,2,3,4 as a

differential operator on ϕφ,f,f is

1

4
H1,2,3,4 · ϕφ,f,f = ϕφ′′,f,f

That is,

∆3ϕφ,f,f = ϕφ′′,f,f

Together the effect of the three differential operators is

(∆1 + ∆2 + ∆3)ϕφ,f,f = ϕ(λf+λf )φ+φ′′,ff

Therefore,

(∆1 + ∆2 + ∆3)(Ψϕφ,f,f
) = Ψϕ(λf+λf

)φ+φ′′,f,f

The operator ∆4 acts by 0 on the vector ϕφ,f,f . Therefore,

∆Ψϕφ,f,f
= Ψϕ(λf+λf

)φ+φ′′,f,f

The function

Ψϕ(λf+λf
)φ+φ′′,f,f
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is another 2, 2 pseudo-Eisenstein series because (λf + λf )φ + φ′′ is another function in

C∞c (R), so [MW, p.100] applies again to give

〈Ψϕ(λf+λf
)φ+φ′′,f,f

,Ψ2,1,1
ψ 〉L2 = 0

Therefore,

〈∆Ψϕ,f,f ,Ψ
2,1,1
ψ 〉L2 = 0

proving that the pseudo-Eisenstein series are orthogonal in the +1-index Sobolev space.

An inductive argument shows that they are orthogonal in every Sobolev space.

An analogous argument shows that 2, 2 pseudo-Eisenstein series are orthogonal to

3, 1 pseudo-Eisenstein series, as well as 1, 1, 1 pseudo-Eisenstein series.

We turn our attention to the 3, 1-Eisenstein series.

Proposition 10. 3, 1 pseudo-Eisenstein series are orthogonal to all other (non-associate)

pseudo-Eisenstein series in Sob(+1).

Proof. We review the construction of 3, 1 pseudo-Eisenstein series with cuspidal and

test function data. Let f1 be a spherical cuspform on GL3(k)\GL3(A) and φ ∈ C∞c (R).

Consider the vector

ϕf,φ(

(
A ∗
0 d

)
) = f(A) · φ(

detA

d3
)

Working in GL4 consider the element

H1 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ∈ gl4(R)

We determine the effect of H1 as a differential operator on ϕf,φ. To this end, let

nx1x2x3 =


1 x1 x2 0

0 1 x3 0

0 0 1 0

0 0 0 1

 my1y2y3y4 =


y1 0 0 0

0 y2 0 0

0 0 y3 0

0 0 0 y4


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Then

H1 · ϕf,φ(nx1x2x3my1y2y3y4) =
d

dt

∣∣∣∣
t=0

ϕf,φ(nx1x2x3my1y2y3y4


et 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

)

This is
d

dt

∣∣∣∣
t=0

ϕf,φ(nx1x2x3my1ety2y3y4) = y1
∂

∂y1
ϕf,φ(nx1x2x3my1y2y3y4)

Therefore,

H1 · ϕf,φ(nx1x2x3my1y2y3y4) = y1
∂

∂y1
ϕf,φ(nx1x2x3my1y2y3y4)

The effect of H2 and H3 is computed similarly. That is

H2 · ϕf,φ(nx1x2x3my1y2y3y4) = y2
∂

∂y2
ϕf,φ(nx1x2x3my1y2y3y4)

while

H3 · ϕf,φ(nx1x2x3my1y2y3y4) = y3
∂

∂y3
ϕf,φ(nx1x2x3my1y2y3y4)

With notation as before, we determine the effect of E1,2 as a differential operator.

Observe that

E1,2 · ϕf,φ(nx1x2x3my1y2y3y4) =
d

dt

∣∣∣∣
t=0

ϕf,φ(nx1x2x3my1y2y3y4


1 t 0 0

0 1 0 0

0 0 1 0

0 0 0 1

)

This is just

d

dt

∣∣∣∣
t=0

ϕf,φ(nx1+y1tx2x3my1y2y3y4) = y1
∂

∂x1
ϕf,φ(nx1x2x3my1y2y3y4)

Therefore, the effect of E1,2 is y1
∂
∂x1

, and E1 differentiates only the cuspform f . Similar

arguments show that the effect of E1,3 as a differential operator is

E1,3 → y2
∂

∂x2
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and

E2,3 → y3
∂

∂x3

Observe that E1,4, E2,4, and E3,4 act by 0 on ϕf,φ. We prove this for E1,4, the argument

being identical for E2,4 and E3,4. Note

E1,4 · ϕf,φ(nx1x2x3my1y2y3y4) =
d

dt

∣∣∣∣
t=0

ϕf,φ(nx1x2x3my1y2y3y4


1 0 0 t

0 1 0 0

0 0 1 0

0 0 0 1

)

This is

d

dt

∣∣∣∣
t=0

ϕf,φ(


1 x1 x2 ∗
0 1 x3 0

0 0 1 0

0 0 0 1

 ·


y1 0 0 0

0 y2 0 0

0 0 y3 0

0 0 0 y4

) = 0

Let

H4 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


Then

H4 · ϕf,φ(


1 x1 x2 0

0 1 x3 0

0 0 1 0

0 0 0 1

 ·


y1 0 0 0

0 y2 0 0

0 0 y3 0

0 0 0 y4

)

Which is

d

dt

∣∣∣∣
t=0

ϕf,φ(


1 x1 x2 0

0 1 x3 0

0 0 1 0

0 0 0 1

 ·


y1 0 0 0

0 y2 0 0

0 0 y3 0

0 0 0 y4t

) = ϕf,φ′

It is clear to see that this is the only element of the Lie algebra differentiating the test

function datum. If {Xi} is a basis of gl4(R) and {Xi} is the dual basis relative to the
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trace pairing, define an element Ω ∈ Ug by

Ω =
∑
i

XiX
∗
i

Let Ω1 be the element of Zgl3 given by

Ω1 =
1

2
H2

1 +
1

2
H2

2 +
1

2
H2

3 + E1,2E2,1 + E1,3E3,1 + E2,3 + E3,2

As shown above, this element differentiates the cuspidal-data, and does not interact

with the test function datum. Since Ω1 ∈ Zgl3 , it acts by a scalar λf on the irreducible

unramified principal series generated by f . Then,

Ω = Ω1 +H4 + Ω2

where Ω2 = Ω − Ω1 − H4. Since Ω2 interacts with neither the cuspidal data nor the

test function data, its effect as a differential operator on ϕf,φ will be 0. Note that

Ω1 · ϕf,φ = ϕλff,φ, while H4 · ϕf,φ = ϕf,φ′ . Therefore,

Ωϕf,φ = ϕf,(λfφ+φ′)

producing another 3, 1 pseudo-Eisenstein series, which is orthogonal to the 2, 1, 1 pseudo-

Eisenstein series, 1, 1, 1, 1 pseudo-Eisenstein series, and 2, 2 pseudo-Eisenstein series, by

[MW,p.100].

Finally, we consider 2, 1, 1 pseudo-Eisenstein series. Let X1, X2, . . . , Xn is a basis for

gl4(R), with dual basis X∗1 , X
∗
2 , . . . , X

∗
n relative to the trace pairing. Let Ω =

∑
iXi ·

X∗i ∈ Zg, and let ∆ be Ω descended to G/K. We will show that application of ∆ to

a 2, 1, 1 pseudo-Eisenstein series made with cuspidal data f and test functions φ1, φ2

produces another 2, 1, 1 pseudo-Eisenstein series. This will prove that 2, 1, 1 pseudo-

Eisenstein series are orthogonal to all other (non-associate) pseudo-Eisenstein series by

[MW, p.100]. We recall the construction of 2, 1, 1 pseudo-Eisenstein series. Let f be a

spherical cuspform on GL2(k)\GL2(A), and let φ1, φ2 ∈ C∞c (R). Let

ϕf,φ1,φ2(


A 0 0

0 b 0

0 0 c

) = f(A) · φ1(
detA

b2
) · φ2(

detA

c2
)
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The 2, 1, 1 pseudo-Eisenstein series with this data is

Ψϕ =
∑

γ∈Pk\Gk

ϕf,φ1,φ2(γg)

Proposition 11. The 2, 1, 1 pseudo-Eisenstein series Ψϕ is orthogonal to all other

(non-associate) pseudo-Eisenstein series in Sob(+1).

Proof. We consider basis elements of the Lie algebra gl4(R). Let Eij be as before. Let

Hi be the matrix with 1 on the ith diagonal entry and 0’s elsewhere. We consider the

effect of the Hi’s as differential operators on ϕf,φ1,φ2 . It will be convenient to use an

Iwasawa decomposition on the GL2 block in the upper left hand corner. We will be

considering right K-invariant functions, so ϕ is determined by its effect on nxmy1y2

where

nx =


1 x 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 and my1y2 =


y1 0 0 0

0 y2 0 0

0 0 1 0

0 0 0 1


We calculate H1’s effect on ϕf,φ1,φ2(nxmy1y2). Note that

H1 · ϕ(nxmy1y2) =
d

dt

∣∣∣∣
t=0

ϕ(nxmy1ety2) = y1
∂

∂y1
ϕ(nxmy1y2)

Similarly,

H2 · ϕ(nxmy1y2) = y2
∂

∂y2
ϕ(nxmy1y2)

Therefore, H1 and H2 differentiate the cuspform f , and leave the functions φ1 and φ2

as they are. As before,

E1,2 · ϕ(nxmy1y2) = y1
∂

∂x
ϕ(nxmy1y2)

Let us consider the effect of H3 as a differential operator on ϕ. Observe that

H3 · ϕf,φ1,φ2(nxmy1y2y3y4) =
d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(nxmy1y2y3ety4)

This is

d

dt

∣∣∣∣
t=0

f(A)φ1(
detA

y2
3

e−2t)φ2(
detA

y2
4

) = −2f(A) · φ′1(
detA

y2
3

)φ2(
detA

y2
4

)
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Therefore,

H3 · ϕf,φ1,φ2(nxmy1y2y3y4) = ϕf,−2φ′1,φ2

Similarly,

H4 · ϕf,φ1,φ2(nxmy1y2y3y4) = ϕf,φ1,−2φ′2

Observe that E1,3 acts as 0 on ϕf,φ1,φ2 . Indeed,

E1,3 · ϕf,φ1,φ2 =
d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(


z1 z2 0 0

z3 z4 0 0

0 0 b 0

0 0 0 c




1 0 t 0

0 1 0 0

0 0 1 0

0 0 0 1

)

This is just

d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(


z1 z2 0 0

z3 z4 0 0

0 0 b 0

0 0 0 c

) = 0

The effect of E1,4 is computed similarly. Observe

E1,4 · ϕf,φ1,φ2 =
d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(


z1 z2 0 0

z3 z4 0 0

0 0 b 0

0 0 0 c




1 0 0 t

0 1 0 0

0 0 1 0

0 0 0 1

)

Which is

d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(


z1 z2 0 0

z3 z4 0 0

0 0 b 0

0 0 0 c

) = 0

The elements E3,1, E3,2, E4,1 and E4,2 also act as 0. To see that E3,4 acts by 0, note

E3,4 · ϕf,φ1,φ2 =
d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(


z1 z2 0 0

z3 z4 0 0

0 0 b 0

0 0 0 c




1 0 0 0

0 1 0 0

0 0 1 t

0 0 0 1

)
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Which is

d

dt

∣∣∣∣
t=0

ϕf,φ1,φ2(


z1 z2 0 0

z3 z4 0 0

0 0 b bt

0 0 0 c

) = 0 =
d

dt

∣∣∣∣
t=0

f(A) · φ1(
detA

b2
)φ2(

detA

c2
) = 0

Likewise, E4,3 acts by 0 as a differential operator. The terms which contribute non-

trivially to the effect of the PGL4(R)-Laplacian are

(H2
1 +H2

2 + E1,2E2,1 + E2,1E1,2) +H2
3 +H2

4

the parenthetical expression acts by a scalar λf on the cuspform f . That is,

(H2
1 +H2

2 + E1,2E2,1 + E2,1E1,2)ϕf,φ1,φ2 = ϕλff,φ1,φ2

since H2
1 +H2

2 +E1,2E2,1 +E2,1E1,2 is the Laplacian on PGL2(R). The remaining two

terms in expression act as follows:

H2
3ϕf,φ1,φ2 = ϕf,4φ′′1 ,φ2

Therefore,

(H2
1 +H2

2 +E1,2E2,1 +E2,1E1,2 +H2
3 +H2

4 )ϕf,φ1,φ2 = ϕλff,φ1,φ2 + ϕf,4φ′′1 ,φ2 + ϕf,φ1,4φ′′2

Therefore, with ∆ the PGL4(R)-Laplacian,

∆Ψϕ = Ψϕλf ,φ1,φ2
+ Ψϕf,4φ′′1 ,φ2

+ Ψϕf,φ1,4φ′′2

is again in the vector space spanned by 2, 1, 1 pseudo-Eisenstein series, so is orthogonal

to all other non-associate pseudo-Eisenstein series in L2, as claimed.

We review Maass-Selberg relations and the theory of the constant term for GL4, as

in [Harish-Chandra, p.75], [MW, p.100-101] and [Garrett 2011a]. Let P = P 2,2 be the

standard, maximal parabolic subgroup

P 2,2 =

(
GL2 ∗

0 GL2

)
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with unipotent radical NP and standard Levi component MP . The parabolic P is self-

associate. Let f be an everywhere spherical cuspform on GL2(k)\GL2(A) with trivial

central character and let ϕ be the vector

ϕ(nmk) = ϕs,f (nmk) = |det m1|2s|det m2|−2s · f(m1) · f(m2)

where

m =

(
m1 ∗
0 m2

)
with m1,m2 in GL2, so that m is in the standard Levi component M of the parabolic

subgroup P , n ∈ N its unipotent radical, k ∈ K, and | · | is the idele norm.

Definition 5. The spherical Eisenstein series is

EPs,f (g) = Es,f (g) =
∑

γ∈Pk\Gk

ϕPs,f (γ · g) for Re(s)� 1

For Re(s) sufficiently large, this series converges absolutely and uniformly on com-

pacta. We define truncation operators. For a standard maximal proper parabolic

P = P 2,2 as above, for g = nmk with

m =

(
m1 ∗
0 m2

)

as above, n ∈ NP and k ∈ O(4) define the spherical function

hP (g) = hP (pk) =
|det m1|2

|det m2|2
= δP (nm) = δP (m)

where δP is the modular function on P . For fixed large real T , the T -tail of the P -

constant term of a left NP
k -invariant function F

cTPF (g) =

{
cPF (g) : hP (g) ≥ T
0 : hP (g) ≤ T

Definition 6. The truncation operator is

ΛTEPϕ = EPϕ − EP (cTPE
P
ϕ )

where

EP (ϕ)(g) =
∑

γ∈PZ\Γ

ϕ(γg)
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These are square-integrable, by the theory of the constant term([MW, pp.18-40],

[Harish-Chandra]). The Maass-Selberg relations describe their inner product as follows.

The inner product

〈ΛTEPϕ ,ΛTEPψ 〉

of truncations ΛTEPϕ and ΛTEPψ of two Eisenstein series EPϕ and EPψ attached to

cuspidal-data ϕ, ψ on maximal proper parabolics P = P 2,2 is given as follows. The

term cs refers to the quotient of Rankin-Selberg L-functions appearing in the constant

term cPE
P
ϕ . That is,

cs =
L(2s− 1, π ⊗ π′)
L(2s, π ⊗ π′)

as in [Langlands 544,Section 4] where π is locally everywhere an unramified principal

series isomorphic to the representation generated by the cuspform f locally.

Proposition 12. Maass-Selberg relations

〈ΛTEPg1 ,Λ
TEPg2〉 =〈g1, g2〉

T s+r−1

s+ r − 1
+ 〈g1, g

w
2 〉c

g2
r

T s+(1−r)−1

s+ (1− r)− 1

+〈gw1 , g2〉cg1s
T (1−s)+r−1

(1− s) + r − 1
+ 〈gw1 , gw2 〉cg1s c

g2
r

T (1−s)+(1−r)−1

(1− s) + (1− r)− 1

Following [M-W pp.18-40], an important consequence of the Maass-Selberg relations

is that for a maximal, proper, self-associate parabolic P in GLn, on the half-plane

Re(s) ≥ 1
2 the only possible poles are on the real line, and only occur if 〈f, fw〉 6= 0. In

that case, any pole is simple, and the residue is square-integrable. In particular, taking

f = fo × fo
〈RessoE

P
ϕ ,RessoE

P
ϕ 〉 = 〈fo, fo〉2 · Ressoc

ϕ
s

as in [Harish-Chandra,p.75]. The group GL4 gives the first instance of non-constant,

noncuspidal contribution to the discrete spectrum; the residues of the Eisenstein series

at its poles give Speh forms. Recall ([Langlands 544] Section 4, though he uses a different

normalization), that the constant term is equal to∣∣detA

detD

∣∣s · f(A) · f(D) +
∣∣detA

detD

∣∣1−s · Λ(2s− 1, π ⊗ π′)
Λ(2s, π ⊗ π′)

· f(A) · f(D)

The L-function appearing in the numerator necessarily has a residue at the unique pole

in the right half-plane. This residue of the Eisenstein series at this pole is the Speh form

[Jacquet] attached to a GL(2) cuspform f , and is in L2.
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We now compute the 2, 2 constant term of the2, 2 Eisenstein series with cuspidal

data f and f . Let P = P 2,2 be the self-associate standard parabolic in G = GL4 with

Levi component GL2×GL2. Let f1 and f2 be spherical cuspforms on GL2(k)\GL2(A).

Define the spherical vector

ϕPs,f1,f2(

(
A ∗
0 D

)
) =

∣∣detA

detD

∣∣s · f1(A) · f2(D)

and then extending to GA by right Kv-invariance and Zv-invariance everywhere locally.

Define cuspidal-data Eisenstein series for Re(s)� 1 by

EPs,f1,f2(g) =
∑

γ∈Pk\Gk

ϕPs,f1,f2(γg)

Proposition 13. The P -constant term of the P -Eisenstein series EPs,f1,f2(g) is given

by

cPE
P
s,f1,f2(g) =

∣∣ detA

detD

∣∣s · f1(A) · f2(D) +
∣∣ detA

detD

∣∣1−s · f1(A) · f2(D) · L(π1 ⊗ π2, 2s− 1)

L(π1 ⊗ π2, 2s)

where π1 is the GA-representation generated by f1 and π2 is the GA-representation gen-

erated by f2.

Proof. The constant term of Es,f1,f2 along P is given by

cPE
P
s,f1,f2(g) =

∫
Nk\NA

EPs,f1,f2(ng) dn =
∑

ξ∈Pk\Gk/Nk

∫
ξ−1Pkξ∩Nk\NA

ϕs,f1,f2(ξγng) dn

The double coset space P\G/N surjects to WP \W/WP which has three double coset

representatives, two of which give a nonzero contribution. The identity coset contributes

a volume, which we will compute later. The nontrivial representative is ξ = σ2σ3σ1σ2.

Observe that ξ · Pk · ξ−1 ∩Nk = {1} so that

cPE
P
s,f1,f2(g) =

∫
Nk\NA

ϕs,f1,f2(ng) dn +

∫
NA

ϕs,f1,f2(ξng) dn

To compute the contribution of the integral∫
NA

ϕs,f1,f2(ξng) dn
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we must re-express the Eisenstein series representation-theoretically. To this end, let

πf1 = ⊗πf1,v be the representation of GA generated by f1 and let πf2 = ⊗πf2,v be the

GA-representation generated by f2. For places v outside a finite set S, fix isomorphisms

jv : Indχf1,v → πf1,v

and

lv : Indχf2,v → πf2,v

Their tensor product jv ⊗ lv is a representation of the Levi M = GL2 ⊗ GL2. Extend

representations of Levi components trivially to parabolics. A πf -valued Eisenstein series

is formed by a convergent sum

EPϕ =
∑

γ∈Pk\Gk

ϕ ◦ γ

Let T = ⊗vTv : ϕ→
∫
NA
ϕ(ξng) dn. We have a chain of intertwinings
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⊗
v∈S

IndGvPv
(
(πf1,v)⊗ πf2,v)νsPv

)
⊗
⊗
v/∈S

IndGvBv
(
(χf1,v ⊗ χf2,v)ν

s,s,s,−3s
Bv

)
literated induction

⊗
IndGvPv (πf1,v ⊗ πf2,v)vsPv ⊗

⊗
IndGvPv

(
IndPvBv(χf1,v ⊗ χf2,v)ν

s,s,s,−3s
Bv

)
l

1⊗
(
⊗IndGvPv (jv⊗lv)

)
⊗

IndGvPv (πf1,v ⊗ πf2,v)νsPv ⊗
⊗

IndGvPv
(
(πf1,v ⊗ πf2,v)νsPv

)
lT=⊗Tv

⊗
IndGvPv

(
(πf1,v ⊗ πf2,v)ν

1−s
Pv

)
⊗
⊗

IndGvPv
(
(πf1,v ⊗ πf2,vν

1−s
Pv

)
l

1⊗
(⊗

IndGvPv (j−1
v ⊗l−1

v )
)

⊗
IndGvPv

(
(πf1,v ⊗ πf2,v)ν

1−s
Pv

)
⊗
⊗

IndGvPv
(
IndPvBv(χf1,v ⊗ χf2,v)ν

3−3s,s−1,s−1,s−1
Bv

)

literated induction

⊗
IndGvPv

(
(πf1,v ⊗ πf2,v)ν

1−s
Pv
⊗ 1
)
⊗
⊗

IndGvBv (χf1,v ⊗ χf2,v)ν
3−3s,s−1,s−1,s−1
Bv

The advantage of this set-up is that for v outside the finite set S, the minimal

parabolic unramified principal series has a canonical spherical vector, namely that spher-

ical vector taking value 1 at 1 ∈ Gv. Therefore the isomorphism Tv can be completely

determined by computing its effect on the canonical spherical vector. The intertwinings

Tv among minimal-parabolic principal series can be factored as compositions of similar
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intertwining operators attached to reflections corresponding to positive simple roots,

each of which is completely determined by its effect on the canonical spherical vector

in the unramified principal series. The simple reflection intertwinings’ effect on the

normalized spherical functions reduce to GL2 computations.

Thus, with simple reflections

σ1 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 σ2 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 σ3 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


and with corresponding root subgroups

Nσ1 =


1 x 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 Nσ2 =


1 0 0 0

0 1 y 0

0 0 1 0

0 0 0 1

 Nσ3 =


1 0 0 0

0 1 0 0

0 0 1 z

0 0 0 1


The simple-reflection intertwinings

Sσ1f(g) =

∫
Nσ1

f(σ1ng) dn Sσ2f(g) =

∫
Nσ2

f(σ2ng) dn

Sσ3f(g) =

∫
Nσ3

f(σ3ng) dn

are instrumental because we wish to compute the effect of

Sσ2 ◦ Sσ3 ◦ Sσ1 ◦ Sσ2

on the normalized spherical vector in the unramified minimal-parabolic principal series

I(s1, s2, s3, s4). Furthermore,

Sστ = Sσ ◦ Sτ

Therefore, we must understand the effect of the individual Sσi ’s. Recall that

Sσ2 : I(s1, s2, s3, s4)→ I(s1, s3 + 1, s2 − 1, s4)

Similarly,

Sσ1 : I(s1, s2, s3, s4)→ I(s2 + 1, s1 − 1, s3, s4)
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and

Sσ3 : I(s1, s2, s3, s4)→ I(s1, s2, s4 + 1, s3 − 1)

The normalized spherical function f0 ∈ I(s1, s2, s3, s4) is mapped by Sσ1 to a multiple

of the normalized spherical function in I(s2 + 1, s1 − 1, s3, s4). The constant is

Sσ1f
0(1) =

∫
f0(σ1


1 x 0 0

0 1 0 0

0 0 1 0

0 0 0 1

) dx =

∫
f0(


1 0 0 0

x 1 0 0

0 0 1 0

0 0 0 1

) dx

Using the Iwasawa decomposition for GL2(kv), we show that this calculation reduces

to a GL2 calculation. Indeed, there is

(
a b

c d

)
in the maximal compact of GL2(kv)

such that (
1 0

x 1

)(
a b

c d

)
=

(
∗ ∗
0 ∗

)
Therefore, 

1 0 0 0

x 1 0 0

0 0 1 0

0 0 0 1




a b 0 0

c d 0 0

0 0 1 0

0 0 0 1

 =


∗ ∗ 0 0

0 ∗ 0 0

0 0 1 0

0 0 0 1


From this, it follows that the constant Sσ1f

0(1) with

Sσ1 : I(s1, s2, s3, s4)→ I(s2 + 1, s1 − 1, s3, s4)

is the same as the constant in the intertwining from I(s1, s2)→ I(s2 + 1, s1− 1) of GL2

principal series, namely

ϕ0(

(
1 0

x 1

)
) dx

where ϕ0 is the normalized spherical vector in the GL2 principal series. A similar

argument applies to the other intertwining operators attached to other simple reflec-

tions. We recall the GL2 computation below. At absolutely unramified finite places,
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1 0

x 1

)
∈ Kv = GL2(σv) for x ≤ 1. For x > 1,

(
1 0

x 1

)(
1 − 1

x

x 1

)
=

(
1
x 1

0 x

)(
0 −1

1 0

)

Thus, with local parameter ω and residue field cardinality q, since the measure of

{x ∈ kv : |x| = qr}

is (q − 1)qr−1, we see that∫
kv

ϕ0(

(
1 0

x 1

)
) dx =

∫
|x|≤1

1 dx +

∫
|x|>1

ϕ0(

(
1
x 1

0 1

)
) dx

This is

1 + (1− q)
∑
r≥1

qr(1−s1+s2) =
ζv(s1 − s2 − 1)

ζv(s1 − s2)

with the Iwasawa-Tate unramified local zeta integral ζv(s).

Using this GL2 reduction, we see that

Sσ2 : I(s1, s2, s3, s4)→ I(s1, s3 + 1, s2 − 1, s4)

and maps the normalized spherical vector in I(s1, s2, s3, s4) to

ζv(s2 − s3 − 1)

ζv(s2 − s3)

times the normalized spherical function in I(s1, s3 + 1, s2 − 1, s4). Then

Sσ1 : I(s1, s3 + 1, s2 − 1, s4)→ I(s3 + 2, s1 − 1, s2 − 1, s4)

and sends the normalized spherical function in I(s1, s3 + 1, s2 − 1, s4) to

ζv(s1 − s3 − 2)

ζv(s1 − s3 − 1)

times the normalized spherical function in I(s3 + 2, s1 − 1, s2 − 1, s4). Then Sσ3 maps

the normalized spherical vector in I(s3 + 2, s1 − 1, s2 − 1, s4) to

ζv(s2 − s4 − 2)

ζv(s2 − s4 − 1)
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times the normalized spherical vector in I(s3 + 2, s1 − 1, s4 + 1, s2 − 2). Finally, Sσ2 :

I(s3 + 2, s1−1, s4 + 1, s2−2)→ I(s3 + 2, s4 + 2, s1−2, s2−2) and sends the normalized

spherical function in I(s3 + 2, s1 − 1, s4 + 1, s2 − 2) to

ζv(s1 − s4 − 3)

ζv(s1 − s4 − 2)

times the normalized spherical function in I(s3 + 2, s4 + 2, s1 − 2, s2 − 2). Altogether,

Sσ2 ◦ Sσ3 ◦ Sσ1 ◦ Sσ2 maps the normalized spherical vector in I(s1, s2, s3, s4) to

ζv(s2 − s3 − 1)

ζv(s2 − s3)
· ζv(s1 − s3 − 2)

ζv(s1 − s3 − 1)
· ζv(s3 − s4 − 2)

ζv(s2 − s4 − 1)
· ζv(s1 − s4 − 3)

ζv(s1 − s4 − 2)

times the normalized spherical vector in the unramified principal series

I(s3 + 2, s4 + 2, s1 − 2, s2 − 2)

For (s1, s2, s3, s4) = (s+ sf1 , s− sf1 ,−s+ sf2 ,−s− sf2) we get

ζv(s− sf1 − (−s+ sf2)− 1)

ζv(s− sf1 − (−s+ sf2))
·
ζv(s+ sf1 − (−s+ sf2)− 2)

ζv(s+ sf1 − (−s+ sf2)− 1)

·
ζv(s− sf1 − (−s− sf2)− 2)

ζv(s− sf1 − (s− sf2)− 1)
·
ζv(s+ sf1 − (−s− sf2)− 3)

ζv(s+ sf1 − (−s− sf2)− 2)

the Rankin Selberg L-function

L(π1 ⊗ π2, 2s− 1)

L(π1 ⊗ π2, 2s)



Chapter 3

Global Automorphic Sobolev

Spaces

We recall basic ideas about global automorphic Sobolev spaces. For example, see

Decelles [2011b], [Grubb], and [Garrett 2010]. Consider the group G = GL(4) defined

over a number field k. At each place v, let Kv be the standard maximal compact

subgroup of the v-adic points Gv of G. That is, Kv = GL4(Ov) for nonarchimedean

places v where Ov denotes the local ring of integers, and Kv = O4(R) for v real and

K = U(n) for v complex. Consider the space C∞c (ZAGk\GA, ω) where ω is a trivial

central character. We define positive index global archimedean spherical automorphic

Sobolev spaces as right K∞-invariant subspaces of completions of C∞c (ZAGk\GA, ω)

with respect to a topology induced by norms associated to the Casimir operator Ω.

The operator Ω acts on the archimedean component f ∈ C∞c (ZAGk\GA, ω) by taking

derivatives in the archimedean component. The norm |.|` on C∞c (ZAGk\GA, ω)K is

|f |` = 〈(1− Ω)`f, f〉
1
2

where 〈, 〉 gives the norm on L2(ZAGk\GA, ω), induces a topology on the space C∞c (ZAGk\GA, ω)K .

Definition 7. The completion H`(ZAGk\GA, ω) is the `-th global automorphic Sobolev

space.

H`(ZAGk\GA, ω)is a Hilbert space with respect to this topology.
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Definition 8. For ` > 0, the Sobolev space H−`(ZAGk\GA, ω) is the Hilbert space dual

of H`(ZAGk\GA, ω).

Since the space of test functions is a dense subspace of H`(ZAGk\GA, ω) with ` > 0,

dualizing gives an inclusion of H−`(ZAGk\GA, ω) into the space of distributions. The

adjoints of the dense inclusions H` → H`−1 are inclusions

H−`+1(ZAGk\GA, ω)→ H−`(ZAGk\GA, ω)



Chapter 4

Casimir Eigenvalue

Let G = SL4(R) and I(s1, s2, s3, s4) a minimal-parabolic principal series. Let

g = sl4

be the Lie algebra of G. For i 6= j, let Ei,j be the matrix with 1 in the (i, j)-th position

and 0 elsewhere. Let Hi,j be the matrix with 1 in the (i, i)-th position and −1 in the

(j, j)-th position. Observe that Hi,i+1 span the Cartan subalgebra h and the Ei,j for

i 6= j span the rest of the Lie algebra. Assume without loss of generality that i < j. We

have the bracket relations

[Ei,j , Ej,i] = Hi,j

As before, the Casimir element is given by

Ω =
1

2
H2

1,2 +
1

2
H2

2,3 +
1

2
H2

3,4 + (
∑
j,i

Ei,jEi,j + Ei,jEj,i)

Rearranging, this gives

Ω =
1

2
H2

1,2 +
1

2
H2

2,3 +
1

2
H2

3,4 + (
∑
i,j

2Ej,iEi,j +Hi,j)

The lie algebra g acts on C∞(G) by

X · f(g) =
d

dt
|t=0f(getX)

The product Ej,iEi,j act by 0, so Casimir is simply

Ω = (
1

2
H2

1,2 −H1,2) + (
1

2
H2

2,3 −H2,3) + (
1

2
H2

3,4 −H3,4) +H1,4 +H1,3 +H2,4

38
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Proposition 14. The Casimir operator acts on I(s1, s2, s3, s4) by the scalar

1

2
(s1 − s2)2 − (s1 − s2) +

1

4
(s1 + s2 − s3 − s4)2 − (s2 − s3) +

1

2
(s3 − s4)2 − (s3 − s4)

− (s1 − s4)− (s1 − s3)− (s2 − s4)

Proof. Let us see how H1,2 acts on I(s1, s2, s3, s4). Note that

etH1,2 =


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1


Therefore

d

dt
|t=0f(


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1

) =
d

dt
|t=0χ(


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1

)

=
d

dt
|t=0e

ts1 · e−ts2

This is just (s1 − s2). Likewise, we see that Hi,j will act on Is by si − sj . Therefore,

the Casimir operator will act by

1

2
(s1 − s2)2 − (s1 − s2) +

1

2
(s2 − s3)2 − (s2 − s3) +

1

2
(s3 − s4)2 − (s3 − s4) + (s1 − s4)

+ (s1 − s3) + (s2 − s4)

Let G = GL4 and I(s1, s2, s3, s4) a minimal-parabolic principal series. Let

g = gl4

be the Lie algebra of G. For i 6= j, let Eij be the matrix with 1 in the (i, j)-th position

and 0 elsewhere. Let Hij be the matrix with 1 in the (i, i)-th position and −1 in

the (j, j)-th position and let H1234 = diag(1, 1,−1,−1). Observe that Hi,i+1 span the
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Cartan subalgebra h and the Eij for i 6= j span the rest of the Lie algebra. Assume

without loss of generality that i < j. We have the bracket relations

[Eij , Eji] = Hij

As before, the Casimir element is given by

Ω =
1

2
H2

12 +
1

4
H2

1234 +
1

2
H2

34 + (
∑
ji

EijEji + EjiEij)

Rearranging, this gives

Ω =
1

2
H2

12 +
1

4
H2

1234 +
1

2
H2

34 + (
∑
ij

2EijEji −Hij)

The Lie algebra g acts on C∞(G) by

X · f(g) =
d

dt
|t=0f(getX)

The product EijEji act by 0, so Casimir is simply

Ω = (
1

2
H2

12 −H1,2) + (
1

4
H2

1234 −H23) + (
1

2
H2

34 −H34)−H14 −H13 −H24

As an example computation, let us see how H12 acts on I(s1, s2, s3, s4). Note that

etH12 =


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1


Therefore

d

dt
|t=0f(


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1

) =
d

dt
|t=0χ(


et 0 0 0

0 e−t 0 0

0 0 1 0

0 0 0 1

)

=
d

dt
|t=0e

ts1 · e−ts2
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This is just (s1− s2). Likewise, we see that Hij will act on Is by si− sj . Therefore, the

Casimir operator will act by

1

2
(s1 − s2)2 − (s1 − s2) +

1

4
(s1 + s2 − s3 − s4)2 − (s2 − s3) +

1

2
(s3 − s4)2 − (s3 − s4)

− (s1 − s4)− (s1 − s3)− (s2 − s4)

Letting s1 = s+sf , s2 = −s+sf , s3 = s−sf , s4 = −s−sf , we see that (s1−s2) = 2s,

(s2−s3) = −2s+2sf , (s3−s4) = 2s, (s1−s4) = 2s+2sf , (s1−s3) = 2sf , (s2−s4) = 2sf ,

and finally (s1 + s2 − s3 − s4) = 4sf . Putting all this into the above expression for

Casimir’s action gives that Casimir acts by

λs,f = 4s2 + 4s2
f − 8sf − 4s

Observe that

λs,f − λw,f = 4(s(s− 1)− w(w − 1))



Chapter 5

Friedrichs self-adjoint extensions

and complex conjugation maps

We review the result due to Friedrichs that a densely-defined, symmetric, semi-bounded

operator admits a canonical self-adjoint extension with a useful characterization. We

follow [Grubb], [Garrett 2011c], [Friedrichs 1935a] and [Friedrichs 1935b].

Let T be a densely defined, symmetric, unbounded operator on a Hilbert space V , with

domain D. Assume further, that T is semi-bounded from below in the sense that

||u||2 ≤ 〈u, Tu〉 for all u ∈ D.

Let 〈x, y〉1 = 〈Tx, y〉 on D. Let V1 be the completion of D with respect to the new inner

product. The operator T remains symmetric for 〈, 〉1. That is,

〈Tx, y〉1 = 〈x, Ty〉1

for x, y ∈ D. By Riesz-Fischer, for y ∈ V , the continuous linear functional

f(x) = 〈x, y〉

can be written

f(x) = 〈x, y′〉1

for a unique y′ ∈ V . Set

T−1
Fr y = y′

42
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That is, the inverse T−1
Fr of the Friedrichs extension TFr of T is an everywhere-defined

map

T−1
Fr : V → V1

continuous for the 〈, 〉1 topology on V1, characterized by

〈Tx, T−1
Fr y〉 = 〈x, y〉

We will prove that, given θ ∈ V−1 and Tθ = T |kerθ, the Friedrichs extension T̃θ has the

feature that

T̃θu = f for u ∈ V1, f ∈ V

exactly when

Tθu = f + c · θ for some c ∈ C

Define a conjugation map on V to be a complex-conjugate-linear automorphism

j : V → V with 〈jx, jy〉 = 〈y, x〉 and j2 = 1. A conjugation map is equivalent to a

complex-linear isomorphism

Λ : V → V ∗

of V with its complex-linear dual, via Riesz-Fischer, by

Λ(y)(x) = 〈x, jy〉 = 〈y, jx〉

Assume j stabilizes D and that T (jx) = jTx for x ∈ D. Then j respects 〈, 〉1:

〈jx, jy〉1 = 〈y, Tx〉 = 〈y, x〉1

for x, y ∈ D. Also, j commutes with TFr:

〈x, T−1
Fr jy〉1 = 〈x, jy〉 = 〈y, jx〉 = 〈T−1

Fr y, jx〉1 = 〈x, jT−1
Fr y〉1

for x ∈ V1 and y ∈ V . Let V−1 be the complex-linear dual of V1. We have V1 ⊂ V ⊂ V−1.

By design,

T : D → V ⊂ V−1

is continuous when V has the subspace topology from V−1:

|Ty|−1 = sup|x|1≤1|Λ(Ty)(x)| = sup|〈x, jTy〉| = |〈x, T jy〉| ≤ sup|x1| · |y1| = |y|1
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by Cauchy-Schwarz-Bunyakowsky. Thus the map T : D → V extends by continuity to

an everywhere-defined, continuous map

T# : V1 → V−1

by

(T#y)(x) = 〈x, jy〉1

Further, T# : V1 → V−1 agrees with TFr : D1 → V on the domain D1 = BV of TFr,

since

(T#y)(x) = 〈x, jy〉1 = 〈Tx, jy〉 = 〈Tx, T−1
Fr TFrjy〉 = 〈T−1

Fr Tx, TFrjy〉

which is

= 〈x, TFrjy〉 = Λ(TFry)(x) for x ∈ D and y ∈ D1

This follows since TFr extends T , and noting the density of D in V .

The following were presented as heuristics in [CdV 1982/1983] and treated more

formally by Garrett in [Garrett 2011a]. We give complete proofs.

Theorem 1. The domain of TFr is D1 = {u ∈ V1 : T#u ∈ V }.

Proof. T#u = f ∈ V implies that

〈x, ju〉1 = (T#u)(x) = Λ(T#u)(x) = Λ(f)(x) = 〈x, jf〉 for all x ∈ V1

By the characterization of the Friedrichs extension, TFr(ju) = jf . Since TFr commutes

with j, we have TFru = f .

Extend the complex conjugation j to V−1 by (jλ)(x) = λ(jx) for x ∈ V1, and

write

〈x, θ〉V1×V−1 = (jθ)(x) = θ(jx) (for x ∈ V1 and θ ∈ V−1)

For θ ∈ V−1,

θ⊥ = {x ∈ V1 : 〈x, θ〉V1×V−1 = 0}

is a closed co-dimension-one subspace of V1 in the 〈, 〉1-topology. Assume θ /∈ V . This

implies density of θ⊥ in V in the 〈, 〉-topology.
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Theorem 2. The Friedrichs extension Tθ = (T |θ⊥)Fr of the restriction T |θ⊥ of T to

D ∩ θ⊥ has the property that Tθu = f for u ∈ V1 and f ∈ V exactly when

T#u = f + cθ

for some c ∈ C. Letting D1 be the domain of TFr, the domain of Tθ is

domain Tθ = {x ∈ V1 : 〈x, θ〉V1×V−1 = 0, T#x ∈ V + C · θ}

Proof. T#u = f + c · θ is equivalent to

〈x, ju〉1 = T#(u)(x) = (f + c · θ)(x) = 〈x, jf〉 (for all x ∈ θ⊥).

This gives 〈x, ju〉1 = 〈x, jf〉. The topology on θ⊥ is the restriction of the 〈, 〉1-

topology of V1, while θ⊥ is dense in V in the 〈, 〉-topology. Thus, ju = T−1
θ jf by the

characterization of the Friedrichs extension of Tθ⊥ . Then u = T−1
θ f , since j commutes

with T .

Given an everywhere-defined map T̃−1 : V → V1, characterized by

〈Tx, T̃−1y〉 = 〈x, y〉 (for x ∈ D, y ∈ V )

we review the proof that given θ ∈ V−1 and Tθ = T |kerθ, the Friedrichs extension T̃θ has

the feature that

T̃θu = f for u ∈ V1, f ∈ V

exactly when

Tθu = f + c · θ for some c ∈ C

Observe that Tθu = f + c · θ is equivalent to

〈x, u〉1 = 〈x, Tu〉 = 〈x, f + c · θ〉V1×V−1 = 〈x, f〉V1×V−1 ⇐⇒ T̃θu = f

where the second equality follows from restricting in the first argument and extending

in the second.



Chapter 6

Moment bounds assumptions

We will need to assume a moment bound to know that the projected distribution is

in the desired Sobolev space. This assumption is far weaker than Lindelof, but highly

non-trivial.

Proposition 15. For a degree n L-function L(s) with suitable analytic continuation

and functional equation, a second-moment bound

T∫
0

|L(
1

2
+ it)|2 dt� TA

implies a pointwise bound

L(σo + it, f)�σo,ε (1 + |t|)
A
2

+ε (for every ε > 0)

Proof. The proof of this is a standard argument, as follows. Fix σo >
1
2 . For 0 < to ∈ R,

let so = σo + ito. Let R be a rectangle in C with vertices 1
2 ± iT and 2± iT for T > to.

By Cauchy’s Theorem

L(so, f)2 =
1

2πi

∫
R

e(s−so)2

s− so
· L(s, f)2 ds

Since the L-function has polynomial vertical growth, we can push the top and bottom

of R to ∞, giving

L(so)
2 =

1

2π

∞∫
−∞

e(( 1
2
−σo)+i(t−to))2

(1
2 − σo) + i(t− to)

· L(
1

2
+ it)2 dt+O(1)

46
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The part of the integral where |t− to| ≥ to is visibly �n,σo e
−to :

|e(( 1
2
−σo+i(t−to))2)| = e( 1

2
−σo)2−(t−to)2 �σo e

−t2o
2 · e

−(t−to)2
2 � e−to

for |t− to| ≥ to. Squaring the convexity bound for L(1
2 + it) gives

|L(
1

2
+ it)|2 � |t|

n
2

+ε (for all ε > 0)

Thus

∞∫
2to

e(( 1
2
−σo+i(t−to))2)

(1
2 − σo) + i(t− to)

· L(
1

2
+ it)2 dt�σo e

−t2o
2

∞∫
2to

e
−(t−to)2

2 · t
n
2

+ε �ε e
−to

The other half of the tail, where t < 0, is estimated similarly. For 0 < t < 2to, use the

assumed moment estimate and the trivial estimate

e(( 1
2
−σo+i(t−to))2)

(1
2 − σo) + i(t− to)

�σo e
( 1
2
−σo)2−(t−to)2 �σo 1

Then
2to∫
0

e(( 1
2
−σo+i(t−to))2)

(1
2 − σo) + i(t− to)

· L(
1

2
+ it)2 dt�σo

2to∫
0

|L(
1

2
+ it)|2 dt� tAo

Thus,

L(so)
2 =

1

2π

∞∫
−∞

e( 1
2

+it−so)2

1
2 + it− so

· L(
1

2
+ it, f)2 dt+O(1)�n,σo t

A
o

Then a standard convexity argument [Lang, p.263] gives the asserted |to|
A
2

+ε on σo = 1
2

for all ε > 0.



Chapter 7

Local automorphic Sobolev

spaces

A notion of local automorphic Sobolev spaces Hs
lafc defined in terms of global au-

tomorphic Sobolev spaces Hs
gafc is necessary to discuss the meromorphic continuation

of solutions u = uw to differential equations (∆ − λw)u = θ for compactly-supported

automorphic distributions θ. We want a continuous embedding of global automorphic

Sobolev spaces into local automorphic Sobolev spaces. This will follow immediately from

the description, below. Second, compactly-supported distributions θ ∈ H−sgafc should ex-

tend to continuous linear functionals in H−slafc. A convenient corollary is that such θ

moves inside integrals appearing in a spectral decomposition/synthesis of automorphic

forms lying in global automorphic Sobolev spaces. Finally, we want automorphic test

functions to be dense in the local automorphic Sobolev spaces.

The necessity of the introduction of larger spaces than global automorphic Sobolev

spaces is apparent already in the simplest situations. On Γ\H, with Γ = SL2(Z),

when θ ∈ H−1−ε
gafc is an automorphic Dirac δafc at z0 ∈ Γ\H, the spectral expansion in

Re(w) > 1
2 for a solution uw to that differential equation yields uw ∈ H1−ε

gafc, but the

meromorphic continuation to Re(w) = 1
2 and then to Re(w) < 1

2 includes an Eisenstein

series Ew which lies in no global automorphic Sobolev space. That Ew lies in local

automorphic Sobolev space H∞lafc is immediate from the smoothness of Ew and the

definition of the local spaces, below.
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We describe local automorphic Sobolev spaces. Given a global automorphic Sobolev

norm |.|s, the corresponding local automorphic Sobolev norms, indexed by automorphic

test functions ϕ, are given by

f → |f |s,ϕ = |ϕ · f |s for f smooth automorphic

Definition 9. The s-th local automorphic Sobolev space is given by

Hs
lafc(X) = quasi-completion of C∞c (X) with respect to these semi-norms

By definition, C∞c (X) is dense inHs
lafc(X). Continuity of the embedding of the global

automorphic Sobolev spaces into the local uses integration by parts. The Lie algebra g

admits a decomposition g = k⊕ s where k is the Lie algebra of the maximal compact

subgroup K and s is the algebra of symmetric matrices. Choose an orthonormal basis

{xi} for s with respect to the Killing form 〈, 〉. Define the gradient

∇ =
∑
i

Xxi ⊗ xi

where Xxi is the differential operator given by Xxif(g) = ∂
∂t |t=0f(g · etxi). Observe that

in the universal enveloping algebra

∇f · ∇F = (
∑
i

Xxif ⊗ xi) · (
∑
j

XxjF ⊗ xj) =
∑
i

Xxif ·XxjF

where the product is the Killing form on s.

Proposition 16. For f, F ∈ C∞c (Γ\G), we have the integration-by-parts formula∫
Γ\G

(−∆f)F =

∫
Γ\G
∇f · ∇F

Proof. Letting X = Γ\G, consider the integral∫
X

∂

∂t
f(g · etxi) ∂

∂t
F (g · etxi) dg

Let u = ∂
∂tf(g · etxi) and dv = ∂

∂tF (getxi)dg. Then du = ∂2

∂t1∂t2
f(g · et1xi · et2xi), while

v = F (g). Then, using the compact support of f and its derivatives, we get∫
X

∂

∂t1
f(g · et1xi) ∂

∂t2
F (g · et2xi) dg =

∫
X
− ∂2

∂t1∂t2
f(g · et1xiet2xi)F (g) dg
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Taking limits as t1 and t2 approach 0 gives the integration-by-parts formula∫
X
Xxif ·XxiF =

∫
X

(−Xxif)2 · F

and ∫
X

(−∆f) · F =

∫
X
∇f · ∇F

Now we can compare the local automorphic Sobolev +1-norm to the global auto-

morphic Sobolev +1-norm as follows:

Proposition 17. Every local automorphic Sobolev +1-norm is dominated by the global

automorphic Sobolev +1-norm.

Proof.

|f |H1
loc

= |ϕf |2H1 =

∫
X

(1−∆)(ϕf)ϕf =

∫
X
∇(ϕf) · ∇(ϕf) +

∫
X
ϕf · ϕf

This is ∫
X

(f∇ϕ+ ϕ∇f) · (f∇ϕ+ ϕ∇f) + |ϕf |2L2

=

∫
X
f2||∇ϕ||2 +

∫
X

(fϕ∇f · ∇ϕ+ ϕf∇f∇ϕ) + |ϕf |2L2

The first and last summands are dominated by (C1 +C2)|f |2L2 where C1 = sup‖ϕ‖ and

C2 = sup‖∇ϕ‖. For the middle term, we use Cauchy-Schwarz and a constant bigger

than 2 · ‖ϕ‖ · ‖∇ϕ‖

(fϕ∇f · ∇ϕ+ ϕf∇f∇ϕ) ≤
∫
X

2ϕ|f |‖∇f‖‖∇ϕ‖ �
∫
X
|f |‖∇f‖

≤ (

∫
X
|f |2)

1
2 (

∫
X
‖∇f‖2)

1
2

= |f |L2 · (
∫
M
−∆f · f)

1
2 ≤ |f |L2 · (

∫
X

(1−∆)f · f)
1
2 = |f |L2 · |f |H1 ≤ |f |2H1

That is, with an implied constant independent of f ,

|ϕf |H1 � |f |H1
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Proposition 18. There is a continuous map

H1
gafc → H1

lafc

Proof. The previous result proves continuity of H1
gafc → H1,ϕ for every automorphic

test function ϕ. Since H1
lafc is the projective limit of the H1,ϕ over all automorphic test

functions ϕ, the universal property of the projective limit guarantees that there must

be a continuous map H1
gafc → H1

lafc.



Chapter 8

Main Theorem: Characterization

and Sparsity of discrete spectrum

Recall the construction of 2, 2 pseudo-Eisenstein series. Let φ ∈ C∞c (R) and let f

be a spherical cuspform on GL2(k)\GL2(A) with trivial central character. Let

ϕ(

(
A B

0 D

)
) = φ(

∣∣∣detA

detD

∣∣∣2) · f(A) · f(D)

extending by right K-invariance to be made spherical. Define the P 2,2 pseudo-Eisenstein

series by

Ψϕ(g) =
∑

γ∈Pk\Gk

ϕ(γg)

Given g =

(
A b

0 D

)
, let h = h(g) = | detA

detD |
2 be the height of g. The spectral decom-

position for θ in a global automorphic Sobolev space H−s is

52
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θ̃ =
∑

F1 cfm GL4

〈θ̃, F1〉 · F1 +
〈θ̃, 1〉
〈1, 1〉

+
∑

F2 cfm GL2

〈θ̃,ΥF2〉 ·ΥF2

+
∑

F3,F4 cfm GL2

∫ 1
2

+i∞

1
2
−i∞

〈θ̃, E2,2
F3,F4,s

〉 · E2,2
F3,F4,s

ds

+
∑

F5 cfm GL3

∫ 1
2

+i∞

1
2
−i∞

〈θ̃, E3,1
F5,s
〉 · E3,1

F5,s
ds+

∑
F6 cfm GL2

∫ ρ+i∞

ρ−i∞
〈θ̃, E2,1,1

F6,λ
〉 · E2,1,1

F6,λ
dλ

+

∫
ρ+ia∗min

〈θ̃, Eλ〉 · Eλ dλ

where F and F
′
are cuspforms on GL(2) and the ΥF ’s are Speh forms. We are interested

in the subspace V of L2(ZAGk\GA) spanned by 2, 2 pseudo-Eisenstein series with fixed

cuspidal data f and f , where f is everywhere locally spherical. Let Da,f be the subspace

of V consisting of the L2-closure of the span of 2, 2 pseudo-Eisenstein series with fixed

cuspidal datum f and f with test function ϕ supported on h(g) < a and whose constant

terms have support on h(g) < a.

Let ∆a be ∆ restricted to Da,f , and let ∆̃a be the Friedrichs extension of ∆a to a

self-adjoint (unbounded) operator. By construction, the domain of ∆̃a is contained in

a Sobolev space Φ+1
a , defined as the completion of Da,f with respect to the +1-Sobolev

norm 〈f, f〉1 = 〈(1−∆)f, f〉L2 . We recall [M-W,141-143], and [Garrett 2014] the

Theorem 3. The inclusion Φ1
a → Φa, from Φ1

a with its finer topology, is compact, so

that the space Φa decomposes discretely.

Indeed, let L2
η be the subspace of L2(PGL4\PGL4(R)/O4(R)) with all constant terms

vanishing above given fixed heights, specified by a real-valued function η on simple posi-

tive roots described below. By its construction, the resolvent of the Friedrichs extension

maps continuously from L2 to the automorphic Sobolev spaceH1 = H1(PGL4(Z)\PGL4(R)/O4(R))

with its finer topology. Letting

H1
η = H1 ∩ L2

η

with the topology of H1, it suffices to show that the injection

H1
η → L1

η
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is compact. To prove this compactness, we show that the image of the unit ball of H1
η

is totally bounded in L2
η.

Let A be the standard maximal torus consisting of diagonal elements of GL4, Z the

center of G, and K = O4(R). Let A+ be the subgroup of AR with positive diagonal

entries, and let Z+ = ZR ∩A+. A standard choice of positive simple roots is

Φ = {αi(a) =
ai
ai+1

i = 1, . . . , r − 1}

where a is the matrix

a =


a1 0 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4


Let Nmin be the unipotent radical of the standard minimal parabolic Pmin consisting

of upper-triangular elements of G. For g ∈ GR, let g = ngagkg be the corresponding

Iwasawa decomposition with respect to Pmin. From basic reduction theory, the quotient

ZRGZ\GR is covered by the Siegel set

S = Nmin
Z \Nmin

R · Z+\A+
0 ·K = Z+Nmin

Z
∖{
g ∈ G : α(ag) ≥

√
3

2
, for all α ∈ Φ

}
Further, there is an absolute constraint so that∫

S
|f | �

∫
ZRGZ\GR

|f |

for all f . For a non-negative real-valued function η on the set of simple roots, let

Xα
η = {g ∈ S : α(ag) ≥ η(α)}

for α ∈ Φ. Let

Cη = {g ∈ S : α(ag) ≤ η(α) for all α ∈ Φ}

This is a compact set, and

S = Cη ∪
⋃
α∈Φ

Xα
η

For α ∈ Φ, let Pα be the standard maximal proper parabolic whose unipotent radical

Nα has Lie algebra nα including the αth root space. That is, for α(a) = ai
ai+1

, the Levi
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component Mα of Pα is GLi×GL4−i. As before, let (cP f)(g) denote the constant term

along a parabolic P of a function f on GZ\GR. For P = Pα, write cα = cP . For a non-

negative real-valued function η on the set of simple roots, the space of square-integrable

functions with constant terms vanishing above heights η is

L2
η = {f ∈ L2(ZRGZ\GR/K) : cαf(g) = 0 for α(ag) ≥ η(α), for all α ∈ Φ}

Vanishing is meant in a distributional sense. The global automorphic Sobolev space H1

is the completion of C∞c (ZRGZ\GR)K with respect to the H1 Sobolev norm

|f |2H1 =

∫
ZRGZ\GR

(1−∆)f · f

where ∆ is the invariant Laplacian descended from the Casimir operator Ω. Put H1
η =

H1 ∩ L2
η.

Proposition 19. The Friedrichs self-adjoint extension ∆̃η of the restriction of the

symmetric operator ∆ to test functions in L2
η has compact resolvent, and thus has purely

discrete spectrum

Proof. Let

A+
0 = {a ∈ A : α(a) ≥

√
3

2
: for all α ∈ Φ}

We grant ourselves that we can control smooth cut-off functions:

Lemma 1. Fix a positive simple roots α. Given µ ≥ η(α)+1, there are smooth functions

ϕαµ for α ∈ Φ and ϕ0
µ such that: all these functions are real-valued, taking values between

0 and 1, ϕ0 is supported in Cµ+1, and ϕαµ is supported in Xα
µ , and ϕ0

µ +
∑

α ϕ
α
µ = 1.

Further, there is a bound C uniform in µ ≥ η(α) + 1, such that |f · ϕ0
µ|H1 ≤ C · |f |H1,

and

|f · ϕαµ|H1 ≤ C · |f |H1

for all µ ≥ η(α) + 1.

Then the key point is

Claim 1. For α ∈ Φ,

lim
µ→∞

(
sup
|f |L2

|f |H1

)
= 0

where the supremum is taken over f ∈ H1
η and support(f) ⊂ Xα

µ .
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Temporarily grant the claim. To prove total boundedness of H1
η → L2

η, given ε > 0,

take µ ≥ η(α) + 1 for all α ∈ Φ, large enough so that f ·ϕαµ|L2 < ε, for all f ∈ H1
η , with

|f |H1 ≤ 1. This covers the images {f · ϕαµ : f ∈ H1
η} with α ∈ Φ with cardΦ open balls

in L2 of radius ε. The remaining part {f · ϕ0
µ : f ∈ H1

η} consists of smooth functions

supported on the compact Cµ. The latter can be covered by finitely-many coordinate

patches φi : Ui → Rd. Take smooth cut-off functions ϕ for this covering. The functions

(f ·ϕi)◦φ−1
i on Rd have support strictly inside a Euclidean box, whose opposite faces can

be identified to form a flat d-torus Td. The flat Laplacian and the Laplacian inherited

from G admit uniform comparison on each φ(Ui) , so the H1(Td)-norm of (f ·ϕ)◦φ−1
i is

uniformly bounded by the H1-norm. The classical Rellich lemma asserts compactness

of

H1(Td)→ L2(Td)

By restriction, this gives the compactness of each H1 ·ϕi → L2. A finite sum of compact

maps is compact, so H1 · ϕ0
µ → L2 is compact. In particular, the image of the unit ball

from H1 admits a cover by finitely-many ε-balls for any ε > 0. Combining these finitely-

many ε-balls with the card(Φ) balls covers the image of H1
η in L2

η by finitely-many ε-balls,

proving that H1
η → L2 is compact.

It remains to prove the claim. Fix α = αi ∈ Φ, and f ∈ H1
η with support inside

Xα
mu for µ � η(α). Let N = Nα, P = Pα, and let M = Mα be the standard Levi

component of P . Use exponential coordinates

nx =

(
1i x

0 14−i

)

In effect, the coordinate x is in the Lie algebra n of NR. Let Λ ⊂ n be the lattice which

exponentiates to NZ. Give η the natural inner product 〈, 〉 invariant under the (Adjoint)

action of MR∩K that makes root spaces mutually orthogonal. Fix a nontrivial character

ψ on R/Z. We have the Fourier expansion

f(nxm) =
∑
ξ∈Λ′

ψ〈x, ξ〉f̂ξ(m)

with n ∈ NR, m ∈MR, and Λ′ is the dual lattice to Λ in n with respect to 〈, 〉, and

f̂ξ(m) =

∫
n\Λ

ψ̂〈x, ξ〉f(nxm) dx
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Let ∆n be the flat Laplacian on n associated to the inner product 〈, 〉 normalized so that

∆nψ〈x, ξ〉 = −〈ξ, ξ〉 · ψ〈x, ξ〉

Let U = M ∩Nmin. Abbreviating Au = Adu,

|f |2L2 ≤
∫
S
|f |2 =

∫
Z+\A+

0

∫
UZ\UR

∫
A−1
u Λ\n

|f(unxa)|2dx du da

δ(a)

with Haar measures dx, du, da, and where δ is the modular function of PR. Using the

Fourier expansion,

f(unxa) = f(unxu
−1 · ua) =

∑
ξ∈λ′

ψ〈Aux, ξ〉 · f̂ξ(ua)

=
∑
ξ∈Λ′

ψ〈x,A∗uξ〉 · f̂ξ(ua)

Then

−∆nf(unxa) =
∑
ξ∈Λ′

〈A∗uξ, A∗uξ〉 · ψ〈x,A∗uξ〉 · f̂ξ(ua)

The compact quotient UZ\UR has a compact set R of representatives in UR, so there is

a uniform lower bound for 0 6= ξ ∈ Λ′:

0 < b ≤ infu∈Rinf06=ξ∈Λ′〈A∗uξ, A∗uξ〉

By Plancherel applied to the Fourier expansion in x, using the hypothesis that f̂0 = 0

in Xα
µ , ∫

A−1
µ Λ\n

|f(unxa)|2 dx =

∫
A−1
u Λ\n

|f(unxu
−1 · ua)|2 dx =

∑
ξ∈Λ′

|f̂ξ(ua)|2

≤ b−1
∑
ξ∈Λ′

〈A∗uξ, A∗uξ〉 · |f̂ξ(ua)|2 =
∑
ξ∈Λ′

−∆̂nfξ(ua) · f̂(ua)

=

∫
u−1Λu\n

−∆nf(unxu
−1 ·ua) ·f(unxu

−1 ·ua) dx =

∫
A−1
u Λ\n

−∆nf(unxa) ·f(unxa) dx

Thus, for f with f̂(0) = 0 on α(g) ≥ η,

|f |2L2 �
∫
Z+\A+

0

∫
UZ\UR

∫
A−1
u Λ\n

−∆nf(unxa) · f(unxa) dx du
da

δ(a)
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Next, we compare ∆n to the invariant Laplacian ∆. Let g be the Lie algebra of GR,

with non-degenerate invariant pairing

〈u, v〉 = trace(uv)

The Cartan involution v → vθ has +1 eigenspace the Lie algebra k of K, and −1

eigenspace s, the space of symmetric matrices.

Let ΦN be the set of positive roots β whose root space gβ appears in n. For each

β ∈ ΦN , take xβ ∈ gβ such that xβ +xθβ ∈ s, xβ−xθβ ∈ k, and 〈xβ, xθβ = 1: for β(a) = ai
aj

with i < j, xβ has a single non-zero entry, at the ijth place. Let

Ω′ =
∑
β∈ΦN

(xβx
θ
β + xθβxβ)

Let Ω′′ ∈ Ug be the Casimir element for the Lie algebra m of MR, normalized so that

Casimir for g is the sum Ω = Ω′ + Ω′′. We rewrite Ω′ to fit the Iwasawa coordinates:

for each β,

xβx
θ
β + xθβxβ = 2xβx

θ
β + [xθβ, xβ] = 2x2

β − 2xβ(xβ − xθβ) + [xθβ, xβ] ∈ 2x2
β + [xθβ, xβ] + k

Therefore,

Ω′ =
∑
β∈ΦN

2x2
β + [xθβ, xβ] modulo k

The commutators [xθβ, xβ] ∈ m. In the coordinates unxa with Ug acting on the right,

xβ ∈ n is acted on by a before translating x, by

unxa · etxβ = unx · etβ(a)·xβ · a = unx+β(a)xβa

That is, xβ acts by β(a) · ∂
∂xβ

.

For two symmetric operators S, T on a not-necessarily-complete inner product space

V , write S ≤ T when

〈Sv, v〉 ≤ 〈Tv, v〉

for all v ∈ V . We say that a symmetric operator T is non-negative when 0 ≤ T . Since

a ∈ A+
0 , there is an absolute constant so that α(a) ≥ µ implies β(a)� µ. Thus,

−∆n = −
∑
β∈ΦN

∂2

∂x2
β

� 1

µ2
·

− ∑
β∈ΦN

x2
β


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on C∞c (Xα
µ )K with the L2 inner product. We claim that

−
∑
β∈ΦN

[xθβ, xβ]− Ω′′ ≥ 0

on C∞c (Xα
µ )K . From this, it would follow that

−∆n � 1

µ2
·

− ∑
β∈ΦN

x2
β

 ≤ 1

µ2
·

− ∑
β∈ΦN

x2
β −

∑
β∈ΦN

[xθβ, xβ]− Ω′′

 =
1

µ2
· (−∆)

Then, for f ∈ H1
η with support in Xα

µ we would have

|f |2L2 �
∫
S
−∆nf · f � 1

µ2

∫
S
−∆f · f � 1

µ2

∫
ZRGZ\GR

−∆f · f � 1

µ2
· |f |2H1

Taking µ large makes this small. Since we can do the smooth cutting-off to affect the H1

norm only up to a uniform constant, this would complete the proof of total boundedness

of the image in L2 of the unit ball from H1
η .

To prove the claimed nonnegativity of T = −
∑

β∈ΦN [xθβ, xβ]−Ω′′, exploit the Fourier

expansion along N and the fact that x ∈ n does not appear in T : noting that the order

of coordinates nxu differs from that above,∫
Z+\A+

0

∫
UZ\UR

∫
Λ\n

Tf(nxua)f(nxua) dx du
da

δ(a)

=

∫
Z+\A+

0

∫
UZ\UR

∫
Λ\n

T

∑
ξ

ψ〈x, ξ〉f̂(ua)

∑
ξ′

ψ〈x, ξ′〉f̂(ua) dx du
da

δ(a)

Only the diagonal summands survive the integration in x ∈ n, and the exponentials

cancel, so this is ∫
Z+\A+

0

∫
UZ\UR

∑
ξ

T f̂ξ(ua) · f̂(ua) du
da

δ(a)

Let Fξ be a left-NR-invariant function taking the same values as f̂ξ on URA
+K, defined

by

Fξ(nxuak) = f̂ξ(uak)

for nx ∈ N , u ∈ U , a ∈ A+, k ∈ K. Since T does not involve n and since Fξ is left

NR-invariant,

T f̂ξ(ua) = TFξ(nxua) = −∆Fξ(nxua)
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and then∫
Z+\A+

0

∫
UZ\UR

∑
ξ

T f̂(ua)·f̂ ξ(ua) du
da

δ(a)
=

∫
Z+\A+

0

∫
UZ\UR

∑
ξ

−∆Fξ(ua)·F ξ(ua) du
da

δ(a)

The individual summands are not left-UZ-invariant. Since f̂ξ(γg) = f̂A∗γξ(g) for γ nor-

malizing n, we can group ξ ∈ Λ′ by UZ orbits to obtain UZ subsums and then unwind.

Pick a representative ω for each orbit [ω], and let Uω be the isotropy subgroup of ω in

UZ, so∫
UZ\UR

∑
ξ

−∆Fξ(ua) · F ξ(ua) du =
∑
[ω]

∫
UZ\UR

∑
ξ∈[ω]

−∆Fξ(ua) · F ξ(ua) du

=
∑
[ω]

∫
UZ\UR

∑
γ∈Uω\UZ

−∆FA∗γω(ua) ·FA∗γω(ua) du =
∑
ω

∫
Uω\UR

−∆Fω(ua) ·Fω(ua) du

Then∫
Z+\A+

0

∫
UZ\UR

∑
ξ

−∆Fξ(ua)·F ξ(ua) du =
∑
ω

∫
Z+\A+

0

∫
Uω\UR

−∆Fω(ua)·Fω(ua) du
da

δ(a)

Since −∆ is a non-negative operator on functions on every quotient Z+NRUω\GR/K of

GR/K, each double integral is non-negative, proving that T is non-negative.

This completes the proof that H1
η → L2

η is compact, and thus, that the Friedrichs

extension of the restriction of ∆ to test functions in L2
η has purely discrete spectrum.

Since the pseudo-Eisenstein series appearing in the spectral decomposition are or-

thogonal to all other automorphic forms appearing in the spectral expansion in every

Sobolev space, we can speak of the projection θ of the period distribution θ̃ to the

subspace V of L2(ZAGk\GA). That is,

θ = 〈θ̃,Υf 〉 ·Υf +
1

4πi

∫ 1
2

+i∞

1
2
−i∞

〈θ̃, Ef,f,s〉 · Ef,f,s

where 〈, 〉 is the pairing of distributions with functions. To check θ is well-defined, we

must check that, for every square-integrable automorphic form f not in the L2-span of

2, 2 pseudo-Eisenstein series, we have

〈θ, f〉 = 0
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To this end, let us check it for 3, 1 pseudo-Eisenstein series Ψf1,φ1 with cuspidal data f1

and test function data φ1. Then

〈θ,Ψf1,φ1〉 =

〈
〈θ̃,Υf 〉 ·Υf + 〈θ̃,Ψ2,2

f,f,φ
〉 ·Ψ2,2

f,f,φ
,Ψ3,1

f1,φ1

〉
This is 〈

〈θ̃,Υf 〉 ·Υf ,Ψ
3,1
f1,φ1

〉
+

〈
〈θ̃,Ψ2,2

f,f,φ
〉 ·Ψ2,2

f,f,φ
,Ψ3,1

f1,φ1

〉
= 0

The Speh form Υf is a ∆-eigenfunction. Furthermore, it is orthogonal to 3, 1 pseudo-

Eisenstein series in L2. Indeed, using the adjunction relation,

〈Υf ,Ψ
3,1
ϕf1,φ1

〉 = 〈c3,1Υf , ϕf1,φ1〉

Since the 3, 1 constant term of the Speh form Υf is zero, the above is zero. Therefore, the

Speh form Υf is orthogonal to 3, 1 pseudo-Eisenstein series. Since 2, 2 pseudo-Eisenstein

series are orthogonal to 3, 1 pseudo-Eisenstein series, we conclude that

〈θ,Ψf1,φ1〉 =

〈
〈θ̃,Υf 〉 ·Υf + 〈θ̃,Ψ2,2

f,f,φ
〉 ·Ψ2,2

f,f,φ
,Ψ3,1

f1,φ1

〉
= 0

We now prove that for a 2, 1, 1 pseudo-Eisenstein series Ψϕf2,φ2,φ3
with cuspidal data f2

and test functions φ2 and φ3, that

〈θ,Ψϕf2,φ2,φ3
〉 = 0

As before, this is just〈
〈θ̃,Υf 〉 ·Υf ,Ψ

2,1,1
ϕf2,φ2,φ3

〉
+

〈
〈θ̃,Ψ2,2

f,f,φ
〉 ·Ψ2,2

f,f,φ
,Ψ2,1,1

f2,φ2,φ3

〉
The second term is zero, because the pseudo-Eisenstein series are orthogonal. The first

term gives zero. Indeed

〈Υf ,Ψ
2,1,1
ϕf2,φ2,φ3

〉 = 〈c2,1,1Υf , ϕf2,φ2,φ3〉 = 0

since the 2, 1, 1 constant term of the Speh form Υf is zero.

Let ∆θ be ∆ with domain ker θ ∩ V . We will show that parameters for the discrete

spectrum λs,f = sf (sf−2)+s(s−1) (if any) of the Friedrichs extension ∆̃θ are contained

in the zero-set of the L-function appearing in the period.
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To legitimize applying the distribution θ to cuspidal-data Eisenstein series Ef,f,s

requires discussion of local automorphic Sobolev spaces. Recall that θ is in the −1

global automorphic Sobolev space, so is in the −1 local automorphic Sobolev space. As

Ef,f,s is in the +1 local automorphic Sobolev space, we can apply θ to it.

Theorem 4. For Re(w) = 1
2 , if the equation (∆ − λw,f )u = θ has a solution u ∈ V ,

then θEf,f,w = 0. Conversely, if θEf,f,w = 0 for Re(w) = 1
2 , then there is a solution

to that equation in V , and the solution is unique with spectral expansion

u =
θ(Υf ) ·Υf

(λΥf − λw)
+

1

4πi

∫
( 1
2

)

θEf,f,1−s
λs,f − λw,f

· Ef,f,s ds

convergent in V +1

Proof. The condition θ ∈ V−1 is that∫
R

|θEf,f,1−s|
2

1 + t2
dt < ∞

Thus, u ∈ V+1, and u has a spectral expansion of the form

u = Af ·Υf +
1

4πi

∫
( 1
2

)

As · Ef,f,1−s ds

with t→ A 1
2

+it in L2(R). The distribution θ has spectral expansion in V−1,

θ = θ(Υf ) ·Υf +
1

4πi

∫
( 1
2

)

θEf,f,1−s · Ef,f,s ds

We describe the vector-valued weak integrals of [Gelfand 1936] and [Pettis 1938] and

summarize the key results. We follow [Bourbaki 1963].

Definition 10. For X,µ a measure space and V a locally convex, quasi-complete

topological vector space, a Gelfand-Pettis (or weak) integral is a vector-valued integral

C0
c (X,V )→ V denoted f → If such that for all α ∈ V ∗, we have

α(If ) =

∫
X
α ◦ f dµ

where the latter is the usual scalar-valued Lebesgue integral.
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Proposition 20. Hilbert, Banach, Frechet, and LF spaces together with their weak

duals are locally convex, quasi-complete topological vector spaces.

Proposition 21. Gelfand-Pettis integrals exist and are unique.

Proposition 22. Any continuous linear operator between locally convex, quasi-complete

topological vector spaces T : V →W commutes with the Gelfand-Pettis integral:

T (If ) = ITf

Note that Ef,f,s lies in a local automorphic Sobolev space. By the Gelfand-Pettis

theory, if T : V → W is a continuous linear map of locally convex topological vector

spaces, where convex hulls of compact sets in V have compact closures and if f is a

continuous, compactly-supported V -valued function on a finite measure space X, then

the W -valued function T ◦ f has a Gelfand-Pettis integral, and

T

(∫
X
f

)
=

∫
X
T ◦ f

Let V = H1
lafc(X). Note that V is a locally convex, quasi-complete topological vector

space since it is the completion of C∞c (X) with respect to a family of semi-norms.

Given a compactly-supported distribution θ ∈ H−1
gafc(X), θ extends to a continuous linear

functional θ ∈ H−1
lafc(X), by section 7. Since θ is a continuous mapping θ : H−1

lafc(X)→ C,

given a continuous, compactly-supported H1
lafc(X)-valued function f ,

θ

∫
X
f =

∫
X
θ ◦ f

Gelfand-Pettis theory allows us to move θ inside the integral. Thus

(λΥf − λw)Af = θ(Υf )

and

(λs,f − λw,f ) ·As = θEf,f,1−s

The latter equality holds at least in the sense of locally integrable functions. Letting

w = 1
2 + iτ , by Cauchy-Schwarz-Bunyakowsky, for any ε > 0,

τ+ε∫
τ−ε

|θEf,f 1
2
−it|

2 dt =

τ+ε∫
τ−ε

|(λ 1
2

+it,f − λ 1
2

+iτ,f )A 1
2

+it|
2 dt
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Using s = 1
2 + it and rewriting the difference of eigenvalues gives us equality of the

above with∫ τ+ε

τ−ε
|(t− τ)(t− 1 + τ)A 1

2
+it|

2dt ≤
∫ τ+ε

τ−ε
|t− τ |2 dt ·

∫ τ+ε

τ−ε
|(t− i+ τ)A 1

2
+it|

2dt� ε3

The function

t→ θEf,f, 1
2

+it

is continuous, in fact

s→ θEf,f,s

is meromorphic, since θ is compactly supported (see [Grothendieck 1954] and [Garrett

2011 e]), so

θEf,f,1−w = 0

Conversely, when θE1−w = 0, the function

t→
θEf,f, 1

2
−it

(λ 1
2

+it − λw)

is continuous and square-integrable, assuring H1-convergence of the integral

u =
θ(Υf ) ·Υf

λΥf − λw,f
+

1

4πi

∫
( 1
2

)

θEf,f,1−s · Ef,f,s
(λs,f − λw,f )

ds

this spectral expansion produces a solution of the differential equation. Any solution

in V +1 admits such an expansion, and the coefficients are uniquely determined, giving

uniqueness.

Let Xa = {A,D ∈ GL2 : | detA
detD |

2 = a}. Let H be the subgroup of GL2 × GL2

consisting of pairs (B,C) so that |detB ·detC| = 1. The group H acts simply transitively

on Xa, so Xa has an H-invariant measure. Fix GL2 cuspforms f1 and f2 and define

ηaF =

∫
ZRHk\Xa

cP (F (a)) · f1(A) · f2(D) dx

Proposition 23. Take Re(w) = 1
2 . For a� 1 such that the support of θ̃ is below h = a,

the constant term cPu of a solution u ∈ V +1 to (∆ − λw,f )u = θ vanishes for height

h ≥ a.
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Proof. Let ηa,f1⊗f2 be the functional above. This functional is in H−
1
2
−ε for all ε > 0.

Thus, for u ∈ H+1,

ηa,f1⊗f2u = ηa,f1⊗f2

(
θ(Υf ) ·Υf

(λΥf − λw)〈1, 1〉
+

1

4πi

∫
( 1
2

)

θEf,f,1−s
λs − λw

· Ef,f,s ds

)

We can break up the integral into two tails and a truncated finite part. The truncated

finite part is a continuous, compactly-supported integral of functions in a local auto-

morphic Sobolev space, so Gelfand-Pettis theory allows us to move compactly-supported

distributions inside the integral. The tails are spectral expansions of functions in H+1,

and since H+1 embeds into a local automorphic Sobolev space, the Gelfand-Pettis theory

applies there also, allowing us to move the distribution inside the integral.

θ(Υf ) · ηa,f1⊗f2(Υf )

(λΥf − λw,f )
+

1

4πi

∫
( 1
2

)

θEf,f,1−s · ηa,f1⊗f2Ef,f,s
λs,f − λw,f

ds

This is

θ

(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )
+

1

4πi

∫
( 1
2

)

ηa,f1⊗f2Ef,f,s
(λs,f − λw,f )

· Ef,f,1−s ds

)
which is

θ

(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )
+

1

4πi

∫
( 1
2

)

C(a1−s + c1−sa
s)

(λs,f − λw,f )
· Ef,f,1−s ds

)
where

C =

∫
ZRHk\Xa

f(A) · f(D) · f1(A) · f2(D)dx

Since θ has compact support below h = a, the last integral need be evaluated only for

h ≤ a. Using the functional equation

c1−sEf,f,s = Ef,f,1−s

we see ∫
( 1
2

)

c1−sa
s

(λs,f − λw,f )
· Ef,f,s ds =

∫
( 1
2

)

a1−s

(λs,f − λw,f )
· Ef,f,s ds

by changing variables. Thus, for g with h(g) ≤ a, the integral can be evaluated by

residues of vector-valued holomorphic functions as in [Grothendieck] and [Garrett 2011

e].
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θ

(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )
+

1

4πi

∫
( 1
2

)

C(a1−s + c1−sa
s)

(λs,f − λw,f )
· Ef,f,1−s ds

)

= θ

(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )
+

1

2πi

∫
( 1
2

)

C(a1−s)

(λs,f − λw,f )
· Ef,f,s ds

)
Consider the integral ∫

( 1
2

)

a1−sθEf,f,s
(λs,f − λw,f )

ds

With s = α+iT , consider a rectangle with vertices 1
2±iT and T ±iT . Let γ1 be the line

segment from 1
2 + iT to T + iT . Let γ2 be the line segment from T + iT to T − iT , and

let γ3 be the line segment from T − iT to 1
2 − iT . We invoke our assumed subconvexity

bound θEf,f,s � |s|
1−ε. Then we get an estimate

∣∣ ∫
γ1

a1−s · θEf,f,s
λs,f − λw,f

ds
∣∣� a1−s · |s|1−ε

|λs,f − λw,f |
· (T − 1

2
)

since γ1 has length T − 1
2 . Then,

a1−s · |s|1−ε

|λs,f − λw,f |
· (T − 1

2
) ≤ a1−s · |s|1−ε

|λs,f − λw,f |
· (|s| − 1

2
)→ 0

as T →∞, since the denominator is a degree 2 polynomial in s, while the numerator is

a polynomial of degree 2− ε. Likewise, for the curve γ2, we get an estimate

∣∣ ∫
γ2

a1−s · θEf,f,s
λs,f − λw,f

ds
∣∣� a1−s · |s|1−ε

|λs,f − λw,f |
· (2T )

since γ1 has length 2T . Then,

a1−s · |s|1−ε

|λs,f − λw,f |
· (T − 1

2
) ≤ a1−s · |s|1−ε

|λs,f − λw,f |
· (2|s|)→ 0

as T →∞, since the denominator is a degree 2 polynomial in s, while the numerator is

a polynomial of degree 2− ε. A similar argument shows that the integrals along γ2 and

γ3 go to 0 as T → 0. Therefore, the original integral∫
( 1
2

)

a1−sθEf,f,s
(λs,f − λw,f )

ds = −2πi(sum of residues in the right half-plane)
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This implies

1

2πi

∫
( 1
2

)

a1−s · C · θEf,f,s
(λs,f − λw,f )

ds = −(sum of residues in the right half-plane)

The Eisenstein series Ef,f,s has a simple pole at s = 1 ([MW] and [Garrett 2011 f]),

with residue
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )

Therefore θEf,f,s has residue at s = 1 given by

θ

(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )

)
Thus,

1

2πi

∫
( 1
2

)

a1−s · C · θEf,f,s
(λs,f − λw,f )

ds = −θ
(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )

)
+

a1−w

1− 2w
· C · θEf,f,1−w

Returning to the original equation,

θ

(
ηa,f1⊗f2(Υf ) ·Υf

(λΥf − λw,f )
+

1

2πi

∫
( 1
2

)

C(a1−s)

(λs,f − λw,f )
· θEf,f,s ds

)
=

a1−w

1− 2w
· C · θE1−w,f,f

Since θE1−w,f,f = 0, we are done.

Recall that Φa decomposes discretely, with (square-integrable) eigenfunctions con-

sisting of truncated Eisenstein series ∧aEsj ,f,f of Eisenstein series for sj such that

as · f(A) · f(D) + a1−s · cs · f(A) · f(D) = 0

where (A,D) ∈ Xa, and finitely-many other eigenfunctions. In fact, these truncations

are in H
3
2
−ε for every ε > 0, since they are solutions to the differential equation (∆ −

λw,f )u = ηa,f1⊗f2 . There are finitely-many other eigenfunctions in addition to these

truncated Eisenstein series.

Let S denote the operator S = 1−∆̃a with dense domain in Φ+1
a as before. Then S is

an unbounded, symmetric, densely-defined operator. We have the continuous injections

Φ+1
a → Φa → Φ−1

a
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Then S extends by continuity to S# : Φ1
a → Φ−1

a . Since we have the natural inclusion

j : Φ1
a → H+1

taking adjoints produces an inclusion

j∗ : H−1 → Φ−1
a

Let j∗θ denote the image of θ under this mapping.Then we can solve the differential

equation

(S# − λw)u = j∗θ

because j∗θ ∈ Φ−1
a .

Proposition 24. Take a � 1 such that the (compact) support of θ is below height a.

If necessary, adjust a so that θEsj 6= 0 for any sj such that

asj · f(A) · f(D) + a1−sj · csj · f(A) · f(D) = 0

where (A,D) ∈ Xa. For w not among the sj, the equation (S# − λw,f )v = j∗θ has a

unique solution vw ∈ V ∩ Φa, this solution lies in H+1, and has spectral expansion

vw =
∑
j

θEf,f,1−sj
λsj ,f − λw,f

·
∧aEf,f,sj
|| ∧a Ef,f,sj ||

2

Proof. As before, any solution is in H+1, since θ ∈ H−1. The solution v ∈ V ∩ Φa has

an expansion in terms of the orthogonal bases ∧aEsj ,f,f ,

vw =
∑
j

Aj
∧aEsj ,f,f
|| ∧a Esj ,f,f ||

convergent in H+1

Thus,

j∗θ = (S# − λw,f )vw =
∑
j

(λsj ,f − λw,f )Aj
∧aEf,f,sj
|| ∧a Ef,f,sj ||

Indeed, since the compact support of θ̃ is below h = a, the projection θ to V is in

the H−1 completion of V ∩ Φa. Therefore, the expansion of j∗θ in terms of truncated

Eisenstein series must be

j∗θ =
∑
j

θEf,f,sj · ∧
aEf,f,sj

|| ∧a Ef,f,sj ||
2
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noting that θEf,f,sj = θ ∧a Ef,f,sj . Thus, the coefficients Aj are uniquely determined,

also giving uniqueness.

Proposition 25. Solutions w to the equation θvw = 0 all lie on (1
2 + iR) ∪ [0, 1], and

there is exactly one such between each pair sj , sj+1 of adjacent solutions of

∣∣ detA

detD

∣∣s +
∣∣ detA

detD

∣∣1−s · Λ(2s− 1, π ⊗ π′)
Λ(2s, π ⊗ π′)

= 0.

Proof. Using the expansion of vw in H+1 in terms of the truncated Eisenstein series,

and that of θ ∈ H−1 in those terms,

θvw =
∑
j

|θE1−sj ,f,f |
2

(λsj ,f − λw,f ) · ‖ ∧a Esj ,f,f‖
2

Since every λsj ,f is real, for λw,f /∈ R, the imaginary part of θvw is easily seen to be

nonzero, thus θvw 6= 0. Thus, any solution lies in (1
2 + iR) ∪ R. For λw > 0, all the

(infinitely-many) summands are nonnegative real, so the sum can not be 0. Therefore

w ∈ (1
2 + iR) ∪ [0, 1].

Take Re(w) = 1
2 with λsj+1,f < λw,f < λsj ,f . Note that θvw ∈ R for such w.

For w on the vertical line segment between sj and sj+1, all summands but the jth

and (j + 1)th are bounded. As w → sj , 0 < λsj ,f − λw,f → 0+ and λsj+1,f − λw,f is

bounded. As w → sj+1, 0 > λsj+1,f −λw → 0− and λsj −λw is bounded. Since w → vw

is a holomorphic H+1-valued function, θvw is continuous. By the intermediate value

theorem, there is at least one w between sj and sj+1 with θvw = 0.

To see that there is at most one w giving θvw = 0 between each adjacent pair sj , sj+1

again use holomorphy of w → vw, and take the derivative in w:

∂

∂w
θvw =

∑
j

|θE1−sj ,f |2 · (2w − 1)

(λsj ,f − λw,f )2 · ‖ ∧a Esj ,f‖2

Everything is positive real except the purely imaginary 2w − 1, because, in fact, the

height a was adjusted so that no θE1−sj ,f vanishes. That is, away from poles, the deriva-

tive is non-vanishing, so all zeros are simple. Returning to the proof of the theorem:

suppose u ∈ V such that (S#−λw)u = j∗θ with Re(w) = 1
2 . For u to be an eigenfunction

for ∆̃θ requires θu = 0 by the nature of the Friedrichs extension.
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From above, ηau vanishes above a height a depending on the compact support of θ̃.

Thus, u ∈ V ∩ Φa, so u must be the solution vw expressed as a linear combination of

truncated Eisenstein series, and θvw = 0. Since there is at most one w giving θvw = 0

between any two adjacent roots sj of

∣∣detA

detD

∣∣s +
∣∣detA

detD

∣∣1−s · Λ(2s− 1, π ⊗ π′)
Λ(2s, π ⊗ π′)

= 0

giving the constraint.



Chapter 9

L-function background

We review some standard facts about automorphic L-functions on GLm following

[Iwaniec-Kowalski] and [Jacquet]. Let π = ⊗pπp be an irreducible automorphic repre-

sentation of GLm(Q), and assume that π is unitary. To such π, one associates an Euler

product

L(s, π) =
∏
p

L(s, πp)

given by a product of local factors. Outside a finite set of primes Sπ, πp is unramified

and we can associate to πp a semi-simple conjugacy class {Aπ(p)} ∈ GLm(C). Such a

conjugacy class is parametrized by its eigenvalues απ(j, p) for j = 1, . . . ,m. The local

factors L(s, πp) for the unramified primes are given by

L(s, πp) = det(I − p−sAπ(p))−1 =
m∏
j=1

(1− απ(j, p)p−s)−1

At the ramified finite primes, the local factors are described by the Langlands parameters

of πp. There is also an archimedean local factor L(s, π∞). L(s, π∞) can be written as a

product of m Gamma factors:

L(s, π∞) =
m∏
j=1

ΓR(s+ µπ(j))

where ΓR(s) = π−
s
2 Γ( s2) and µπ(j) is a set of m numbers associated to π∞. They satisfy

Re(µπ(j)) > −1

2

71



72

Let

Φ(s, π) = L(s, π∞)L(s, π)

Associated to π is its contragradient π̃, which is itself an irreducible cuspidal automor-

phic representation. For any p ≤ ∞, π̃p is equivalent to the complex conjugate πp and

therefore

{απ̃(j, π)} = {απ(k, p)}

and

{µπ̃(j)} = {µπ(j)}

Godement-Jacquet proved that Φ(s, π) extends to an entire function, is bounded in

vertical strips and satisfies a functional equation

Φ(s, π) = ε(s, π)Φ(1− s, π)

with

ε(s, π) = τ(π)Q−sπ

where Qπ > 0 is the conductor of π. It is a positive integer with prime factors in Sπ

and τ(π) ∈ C×. We note that Qπ̃ = Qπ and that τ(π)τ(π) = Qπ.

The zeros of Φ(s, π) will be denoted by ρπ, and are the nontrivial zeros of L(s, π).

The nontrivial zeros of L(s, π) are related to those of L(s, π) via s→ 1−s. The Riemann

hypothesis for L(s, π) is that Re(ρπ) = 1
2 . We also introduce the counting function

Nπ(T ) : = #{ρπ : |Im ρπ| < T}

We have

Nπ(T ) ∼ m

π
T log T

An important consequence of the above is the Small Gaps Conjecture, namely, that

liminfn→∞(γn+1 − γn)
logγn

2π
= 0

Let BN = {λj} be a multi-set of N numbers and let Q be a box in Rn−1. The n-level

correlation of the set BN is defined as

1

N
#{(λj1 − λj2 , . . . , λjn−1 − λjn) ∈ Q : 1 ≤ j1 ≤ · · · ≤ N}
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where ji1 6= ji2 if i1 6= i2. This measures the correlations between the differences of

numbers in BN . We can regard the box Q as a product of n− 1 characteristic functions

of intervals and express the condition x ∈ Q in terms of the characteristic functions.

Following Rudnick-Sarnak, let f be a smooth, symmetric function such that f is of

rapid decay in the hyperplace
∑n

j=1 xj = 0 and

f(x+ t(1, . . . , 1)) = f(x) for t ∈ R

Define the n-level correlation of the set BN with respect to f as

Rn(BN , f) =
n!

N

∑
S⊂BN :|S|=n

f(S)

where

f(S) = f(λj1 , . . . , λjn) if S = {λj1 , . . . , λjn}

To study the n-level correlation of the zeros of L-functions, assume the generalized

Riemann hypothesis and normalize the γπ by

γ̃(j)
π = γ(j)

π

m

2π
log|γ(j)

π |

in order for the average vertical spacing between zeros to be 1. Let

BN = {λ̃(j)
π : 1 ≤ j ≤ N}

Assuming GRH and that the Fourier transform

f̂(u1, . . . , un) =

∫
Rn
f(x) · e(xu) dx

is supported in
∑n

j=1 |uj | <
2
m . Rudnick and Sarnak proved that

lim
N→∞

Rn(BN , f) =

∫
Rn−1

f(x)W
(n)
U (x)δ(

x1 + · · ·+ xn
n

) dx

where

W
(n)
U (φ) = det

(
sinπ(φj − φk)
π(φj − φk)

)
for 1 ≤ j ≤ n and 1 ≤ k ≤ n. This can be written as

lim
N→∞

Rn(BN , f) = n

∫
Rn−1

f(x1, . . . , xn)Wn(x1, . . . , xn) dx1 . . . dxn−1
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where xn = −x1 − · · · − xn−1. In particular, we have

lim
N→∞

R2(B2, f) = 2

∫
R
f(x,−x)W2(x,−x) dx =

∫
R
f(x)

(
1− (

sinπx

πx
)

)2

dx

where f(x) = f(x, 0), which agrees with the Montgomery pair correlation result.

Recall that the 2, 2 constant term of the 2, 2 Eisenstein series with fixed cuspidal

data f and f at height h = a is

as + csa
1−s

where

cs =
Λ(2(1− s), f ⊗ f)

Λ(2s, f ⊗ f)

A standard argument principle computation shows that the number of zeros of as +

csa
1−s with imaginary parts between 0 and T > 0 is

N(T ) =
T

π
log(

T

2πe
+ T log a+O(log T )

All zeros of as + csa
1−s are on Re(s) = 1

2 for a ≥ 1. Recall ([Iwaniec-Kowalski, p.115])

that

log L(1 + iu, f ⊗ f)− log L(1 + it, f ⊗ f) = O(
log t

log log t
) · (u− t)

for u ≥ t.

Lemma 2. The gaps between consecutive zeros of as + csa
1−s at height greater than or

equal to T are
π

log T
+O(

1

log log T
)

Proof. The condition for the vanishing of as + csa
1−s can be rewritten as

Λ(2s, f ⊗ f)

Λ(2(1− s), f ⊗ f)
= −1

where

Λ(s, f ⊗ f) =
π1−s

2
· Γ(

s+ µ− ν
2

)Γ(
s− µ+ ν

2
)Γ(

s− µ− ν
2

)Γ(
s+ µ+ ν

2
) · L(s, f ⊗ f)

where µ is the parameter for the principal series Iµ generated by f , while ν is the

parameter for the principal series generated by f . Therefore, with s on the critical line,
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we have

− 1 =

Γ(1+2it+µ−ν
2 )Γ(1+2it−µ+ν

2 )Γ(1+2it−µ−ν
2 )Γ(1+2it+µ+ν

2 )

Γ(1−2it+µ−ν
2 )Γ(1−2it−µ+ν

2 )Γ(1−2it−µ−ν
2 )Γ(1−2it+µ+ν

2 )
π1−2itL(1 + 2it, f ⊗ f)

L(1− 2it, f ⊗ f)

All the factors on the right-hand side are of absolute value 1. The count of zeros as

t = Im(s) moves from 0 to T is the number of times the right-hand side assumes the

value −1. Regularity is entailed by upper and lower bounds for the derivative of the

logarithm of that right-hand side, for large t. Observe that

d

dt
Im log

Γ(a+ it)

Γ(a− it)
= 2

d

dt
Im log Γ(a+ it)

From the Stirling asymptotic,

log Γ(s) = (s− 1

2
)log s− s+

1

2
log 2π +Oδ(

1

s
)

in Re(s) ≥ δ > 0. From this, we have

log Γ(a+ it) = itlog (a+ it)− (a+ it) +
1

2
log 2π +Oδ(

1

a+ it
)

= it
(
i(π +O(

1

t
)) + log t+O(

1

t2
)
)
− (a+ it) +

1

2π
log 2π +Oδ(

1

a+ it
)

Therefore,

Im log Γ(a+ it) = tlog t− t+O(
1

t
)

Consider, for 0 < δ � t,

Im log Γ(a+i(t+δ))−Im log Γ(a+it) =
(
(t+δ)log (t+δ)−(t+δ)

)
−(tlog t−t)+O(

1

t
)

Which is

= δlog t− (t+ δ)
δ

t
− δ +Oδ(

1

t
) = δlog t− 2δ +Oδ(

1

t
)

In particular, for 0 < δ ≤ 1
log t ,

Im log Γ(a+ i(t+ δ))− Im log Γ(a+ it) = δlog t+O(
1

log t
)

Let

f(t) =
Γ(1+2it+µ−ν

2 )Γ(1+2it−µ+ν
2 )Γ(1+2it−µ−ν

2 )Γ(1+2it+µ+ν
2 )

Γ(1−2it+µ−ν
2 )Γ(1−2it−µ+ν

2 )Γ(1−2it−µ−ν
2 )Γ(1−2it+µ+ν

2 )
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Then using the calculation above,

Im log f(t+ δ)− Im log f(t) = 4δlog t+O(
1

log t
)

The result on L(1 + it, f ⊗ f) quoted above gives

log L(1 + 2i(t+ δ), f ⊗ f)− log L(1 + 2it, f ⊗ f) = O(
log t

log log t
)

Therefore,

Im log Λ(1 + 2i(t+ δ), f ⊗ f)− Im log Λ(1 + 2it, f ⊗ f) = 4δlog t+O(
log t

log log t
) · δ

The presence of the 4 being due to the four factors of Γ appearing. Thus, if t gives a

0 of the constant term, the next t′ = t + δ giving a zero of the constant term must be

such that

4δlog t+O(
log t

log log t
) · δ ≥ 2π

On the other hand, when that inequality is satisfied, then the unit circle will have been

traversed, and a zero of the constant term occurs.

Since periods of automorphic forms produce L-functions, it is anticipated that θEs

will produce a self-adjoint, degree 4 L-function, with a corresponding pair-correlation

conjecture. That is, given ε > 0, there are many pairs of zeros of θEs within ε of each

other. The previous section exhibits the zeros w of θEs as paramaters of the discrete

spectrum of ∆̃θ. Since parameters of the discrete spectra interlace with the zeros sj of

as+csa
1−s, and these are regularly spaced by the argument above, the discrete spectrum

is presumably sparse.
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