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Background

My research interest lies in applications of the spectral theory of automorphic
forms to zeros of L-functions. A refined version of the spectral theory of automor-
phic forms plausibly has bearing on zeros of automorphic L-functions and other pe-
riods. My thesis proves that the zeros of a degree 4 L-function arise as parameters

for the discrete spectrum of a self-adjoint perturbation ∆̃θ of the Laplace-Beltrami
operator.

The utility of the spectral theory of automorphic forms is powerfully illustrated
by the following example. In 1977, Haas numerically computed eigenvalues λ of the
invariant Laplacian

∆ = y2(
∂2

∂x2
+

∂2

∂y2
)

on SL2(Z)\H, parametrized as λw = w(w− 1). Haas listed the w-values, intending
to solve the differential equation

(∆− λw)u = 0

Stark and Hejhal observed zeros of ζ and of an L-function on the list. This suggested
an approach to proving the Riemann Hypothesis, since it seemed that zeros w of ζ
might give eigenvalues λw = w(w − 1) of ∆. Since ∆ is a self-adjoint, nonpositive
operator, these eigenvalues would necessarily be nonpositive also, forcing either
Re(w) = 1

2 or w ∈ [0, 1]. Hejhal attempted to reproduce Haas’ list with more careful
computations, but the zeros failed to appear on Hejhal’s list. Hejhal realized that
Haas had solved the inhomogeneous equation

(∆− λw)u = δafcω

allowing a multiple of an automorphic Dirac δ on the right hand side. However,
since solutions uw of (∆−λ)u = δafcω are not genuine eigenfunctions of the Laplacian,
this no longer implied nonpositivity of the eigenvalues.

The natural question was whether the Laplacian could be perturbed so as to
exhibit a fundamental solution as a legitimate eigenfunction for the perturbed op-
erator. That is, one would want a variant ∆? for which

(∆? − λw)uw = 0 ⇐⇒ (∆− λw)uw = C · δafcω
Because of Colin de Verdiere’s argument for meromorphic continuation of Eisenstein
series as well as the iconic Lax-Phillips argument for discretization of the cuspidal
spectrum [Lax-Phillips,1976, p.204-206], it was anticipated that ∆? = ∆Fr would
be a fruitful choice for a suitably chosen Friedrichs extension. ∆Fr is self-adjoint,
and therefore symmetric. This gave glimpses of a potential proof of the Riemann
hypothesis.
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Friedrichs extensions have the desired properties and they played a big part
in another story, namely Colin de Verdiere’s meromorphic continuation of Eisen-
stein series, though in that story, the distribution that appeared was the constant-
term distribution. There, the spaces of interest were the orthogonal complements
L2(Γ\H)a to the spaces of pseudo-Eisenstein series whose test function is supported
on [0,∞). ∆a was ∆ with domain C∞c (Γ\H) and constant term vanishing above
height y = a. ∆Fr was the Friedrichs extension of ∆a to a self-adjoint unbounded
operator on L2(Γ\H)a. In this way, a Friedrichs extension attached to the distri-
bution on Γ\H given by

Ta(f) = (cP f)(ia)

automatically places all eigenfunctions inside a +1-index Sobolev space. The Dirac
δ on a two-dimensional manifold lies in a Sobolev space with index −1 − ε for all
ε > 0, so by elliptic regularity, a fundamental solution lies in the +1 − ε-Sobolev
space. This implies that a fundamental solution couldn’t be an eigenfunction for
any Friedrichs extension of a restriction of ∆ described by boundary conditions.

Dissertation Work

This gives us a compelling reason to study the spectral theory of automorphic
forms, as they encode simple yet elegant number-theoretic information. As rich
as the SL2 configuration is, it isn’t indicative of the complexity of higher rank
groups. Indeed, for SL2 the residual spectrum of the Laplacian consists only of
constants. For SL4, there is a marked difference, in that Speh forms also enter into
the discrete spectrum. This provides an incentive for setting up a finer harmonic
analysis on higher rank groups; in particular one that does not involve gritty details.
More to the point, it is anticipated that understanding spectral theory for higher
rank groups will illuminate number-theoretic problems arising in lower-rank groups.
This is part of the reason why the Haas-Hejhal episode sketched in the introduction
struck a nerve in the 1970’s and 1980’s. There, GL(2) spectral theory (Eisenstein
series and cuspforms) seem to have bearing on GL(1) (Riemann’s zeta function).

The spectral theory for G = SL4(R) is considerably more complicated. Due to
the plurality of parabolic subgroups, the continuous spectrum is spanned by many
different kinds of pseudo-Eisenstein series. There is also residual spectrum, the
so-called Speh forms. These arise as follows: Let φ be the function on R given by
φ(t) = ts and let f be a GL2 cuspform with trivial central character. Let

ϕ(

(
A b
0 D

)
) = φ(

∣∣∣ detA

detD

∣∣2) · f(A) · f(D)

extending by right K-invariance to be made spherical. Define the P 2,2 Eisenstein
series by

Eϕ(g) =
∑

γ∈Pk\Gk

ϕ(γg)

The theory of the constant term tells us that this Eisenstein series has a pole in the
right half-plane Re(s) > 1, with a square-integrable residue, the Speh form Ψf .

My thesis is concerned with using Sobolev space techniques to gain traction on
the zeros of a degree-4 L-function (under a plausible subconvexity bound). To
this end, we consider the subspace V of L2(ZAGk\GA) spanned by 2, 2 pseudo-
Eisenstein series made with fixed cuspidal data f as well as the Speh form Ψf . Let
Va be the subspace of V consisting of those automorphic forms whose 2, 2 constant
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term vanishes above height h = a and whose 1, 3 and 3, 1 constant term vanishes
entirely. By completing automorphic test functions with respect to the s-th Sobolev
norm

〈f, f〉Hs = 〈(1−∆)sf, f〉L2

we get the s-th Sobolev space V s. We will be concerned with V +1 as well as its
Hilbert-space dual V −1. Given a compactly-supported, Γ-invariant automorphic
distribution θ̃, whose projection θ to V is in V −1, we let ∆θ be ∆ with domain

kerθ, and let ∆̃θ be the Friedrichs extension. My thesis shows that the discrete

spectrum (if any) of the operator ∆̃θ interlaces with the zeros of the constant term
of the 2, 2 Eisenstein series. Such spacing is too regular to be compatible with pair

correlation, so that the discrete spectrum of ∆̃θ must be sparse or empty.

Future Work

The effect of considering n distributions is akin to that of considering n ”bound-
ary conditions”. Manifest already in Sturm-Liouville problems, imposing boundary
conditions has dramatic effects on the spectrum of an operator. As an example,
consider the second-order differential equation

u
′′
− λu = 0

on (0, 2π) with boundary conditions u(0) = u(2π) = 0. This is equivalent to
considering the differential equation in L2(R) given by

u
′′
− λu = c · (δ0 ± δ2π) and (δ0 ± δ2π)u = 0

The solutions to this inhomogeneous equation are given by functions u with u(x) =
sin(nx2 ) on [0, 2π] and u(x) = 0 for x /∈ [0, 2π]. This gives us discrete spectrum, in
contrast to solving

u
′′
− λu = 0

on L2(R) which has purely continuous spectrum.
Consider an n-dimensional subspace of H−1 whose intersection with H0 is {0}.

Take n linearly independent distributions θ1, θ2, . . . , θn ∈ H−1 and solve

(∆− λw)ui = θi for i = 1, 2 . . . , n

Let ∆θ1,...,θn be ∆ with domain D =
⋂

ker θi and let ∆̃θ1,...,θn be the Friedrichs
extension. Roughly as before, the discrete spectrum is nonempty if and only if

det|θiuj | = 0

One immediate project is to study the dsicrete spectrum of ∆̃θ1,...,θn and investigate
whether this operator is more willing to yield its mysteries than the operator in my
thesis work.

Another project is to consider the period in [Jacquet-Lapid-Rogowski]. With
G = GL4 and H ⊂ G a subgroup obtained as the fixed point set of an involution,
the period is given by

θH(ϕ) =

∫
Hk\HA

ϕ(h) dh

This expression converges absolutely if ϕ is a cuspform. However, if ϕ is a cuspidal-
data Eisenstein series, one needs to invoke a relative trace formula to show that the
output gives an Euler product. I hope to investigate whether there is a spectral
interpretation of the zeros of the resulting L-function, using Sobolev-space methods.
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