Math 2263	Name (Print):	
Fall 2014	Student ID:	
Midterm 1	Section Number: 001	
October 2, 2014	Teaching Assistant:	
Time Limit: 50 minutes	Signature:	

This exam contains 7 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions - correct answers without work will not be awarded points.

Do not give numerical approximations to quantities such as $\sin 5$, π , $\ln(3)$ or $\sqrt{2}$. However, you should simplify $\cos \frac{\pi}{2} = 0$, $e^0 = 1$, and so on.

1	$15 \ \mathrm{pts}$	
2	12 pts	
3	$15 \mathrm{~pts}$	
4	10 pts	
5	15 pts	
6	$15 \mathrm{~pts}$	
7	18 pts	
TOTAL	100 pts	

1. (a) (6 points) Find the point at which the given lines intersect:

 $L_1: x = 1 + t, y = 1 - t, z = 2t$ and $L_2: x = 4 + 2s, y = 1 + s, z = 1 - s.$

(b) (9 points) Find an equation for the plane which contains both lines.

2. (12 points) Find an equation for the surface in (x, y, z)-space obtained by rotating the ellipse $x^2 + 4y^2 = 1$ of the (x, y)-plane **about the x-axis**.

3. (a) (5 points) Find the domain of the function $f(x,y) = \sqrt{1-x^2} - \sqrt{y}$.

(b) (10 points) Evaluate the limit

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + xy - y^2}{x^2 - y^2}$$

or state that it does not exist, giving reasons.

4. (10 points) Suppose z = f(x, y) is a function with partial derivatives $f_x(0,3) = -1$ and $f_y(0,3) = 2$. If x and y are both functions of t:

$$x = 1 - t \quad \text{and} \quad y = 2t + t^2,$$

find $\frac{dz}{dt}$ at t = 1.

5. (15 points) For the function $f(x, y) = e^{-y} \sin 2x$, find the second partial derivatives

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, \quad f_{xy} = \frac{\partial^2 f}{\partial y \partial x} \quad \text{and} \quad f_{yy} = \frac{\partial^2 f}{\partial y^2}.$$

6. (15 points) The point (x, y, z) = (2, -1, 0) lies on the surface S:

$$x^2 - 3y^2 + xz - 4z^2 = 1.$$

Find the equation of the tangent plane to the surface S at (2, -1, 0), in the form ax+by+cz = d.

- 7. The temperature at any point (x, y) is given by $T(x, y) = 10 x^2 2y^2$.
 - (a) (8 points) Find the rate of change of temperature at point P = (1,0) in the direction toward the point (0,2).

(b) (10 points) In which direction does the temperature increase fastest at P? Find the maximum rate of increase of the temperature at P.