Math 2263
Fall 2014
Midterm 1
October 2, 2014
Time Limit: 50 minutes

Name (Print):
Student ID:
Section Number: 001
\qquad

Teaching Assistant:
Signature:
\qquad
\qquad

This exam contains 7 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions - correct answers without work will not be awarded points.

Do not give numerical approximations to quantities such as $\sin 5, \pi, \ln (3)$ or $\sqrt{2}$. However, you should simplify $\cos \frac{\pi}{2}=0, e^{0}=1$, and so on.

1	15 pts	
2	12 pts	
3	15 pts	
4	10 pts	
5	15 pts	
6	15 pts	
7	18 pts	
TOTAL	100 pts	

1. (a) (6 points) Find the point at which the given lines intersect:

$$
L_{1}: x=1+t, \quad y=1-t, \quad z=2 t \quad \text { and } \quad L_{2}: x=4+2 s, \quad y=1+s, \quad z=1-s .
$$

Solution. We need to find t and s such that $1+t=4+2 s, 1-t=1+s$ and $2 t=1-s$. Solving first two equations we get $t=1, s=-1$ which satisfy the third equation too. So, the point of intersection is $(2,0,2)$.
(b) (9 points) Find an equation for the plane which contains both lines.

Solution. The direction vectors of the lines L_{1} and L_{2} are $\overrightarrow{v_{1}}=\langle 1,-1,2\rangle$ and $\overrightarrow{v_{2}}=$ $\langle 2,1,-1\rangle$. Note that $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ both lie on the plane. The normal vector to the plane $\overrightarrow{v_{1}} \times \overrightarrow{v_{2}}=\langle-1,5,3\rangle$. The plane passes through the point $(2,0,2)$. Hence, the equation for the plane is

$$
(-1)(x-2)+5(y-0)+3(z-2)=0, \quad \text { or } \quad x-5 y-3 z+4=0 .
$$

2. (12 points) Find an equation for the surface in (x, y, z)-space obtained by rotating the ellipse $x^{2}+4 y^{2}=1$ of the (x, y)-plane about the x -axis.
Solution. Take any point (x, y, z) on the surface. The distance from the x-axis is $\sqrt{y^{2}+z^{2}}$, which replaces $|y|$ in the given equation. So the equation for the surface of revolution is $x^{2}+4 y^{2}+4 z^{2}=1$.

Alternate Solution. If we rotate an ellipse $x^{2}+4 y^{2}=1$ with center at $(0,0)$ in the (x, y)-plane about the x-axis, we will get an ellipsoid in 3 -dimensional space with center at $(0,0,0)$.
Say, the equation of the ellipsoid is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Intersection with $x y$-plane is $x^{2}+4 y^{2}=1$, which gives $a=1, b=\frac{1}{2}$.
Intersection with $y z$-plane is a circle of radius $\frac{1}{2}$, that is $y^{2}+z^{2}=\frac{1}{4}$, which gives $c=\frac{1}{2}$. So, the equation of the ellipsoid is

$$
x^{2}+4 y^{2}+4 z^{2}=1 .
$$

3. (a) (5 points) Find the domain of the function $f(x, y)=\sqrt{1-x^{2}}-\sqrt{y}$.

Solution. The domain of $f: D=\left\{(x, y): 1-x^{2} \geq 0, y \geq 0\right\}=\{(x, y):|x| \leq 1, y \geq 0\}$.
(b) (10 points) Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y-y^{2}}{x^{2}-y^{2}}
$$

or state that it does not exist, giving reasons.

Solution. We take limit $(x, y) \rightarrow(0,0)$ along the line $y=m x, m \neq \pm 1$. The corresponding limit becomes

$$
\lim _{x \rightarrow 0} \frac{x^{2}+x \cdot m x-(m x)^{2}}{x^{2}-(m x)^{2}}=\lim _{x \rightarrow 0} \frac{1+m-m^{2}}{1-m^{2}}=\frac{1+m-m^{2}}{1-m^{2}} .
$$

The limit clearly depends on m. For example, the limit $=1$ if $m=0$ but the limit $=\frac{5}{3}$ if $m=\frac{1}{2}$. Hence, the limit does not exist.
4. (10 points) Suppose $z=f(x, y)$ is a function with partial derivatives $f_{x}(0,3)=-1$ and $f_{y}(0,3)=2$. If x and y are both functions of t :

$$
x=1-t \quad \text { and } \quad y=2 t+t^{2}
$$

find $\frac{d z}{d t}$ at $t=1$.

Solution. By chain rule,

$$
\frac{d z}{d t}=f_{x}(x(t), y(t)) \frac{d x}{d t}+f_{y}(x(t), y(t)) \frac{d y}{d t} .
$$

We have $\frac{d x}{d t}=-1$ and $\frac{d y}{d t}=2+2 t$. Plugging in $t=1$, we obtain

$$
\left.\frac{d z}{d t}\right|_{t=1}=f_{x}(0,3) \cdot(-1)+f_{y}(0,3) \cdot 4=(-1) \cdot(-1)+2 \cdot 4=9 .
$$

5. (15 points) For the function $f(x, y)=e^{-y} \sin 2 x$, find the second partial derivatives

$$
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, \quad f_{x y}=\frac{\partial^{2} f}{\partial y \partial x} \quad \text { and } \quad f_{y y}=\frac{\partial^{2} f}{\partial y^{2}} .
$$

Solution.

$$
\begin{gathered}
f_{x}=2 e^{-y} \cos (2 x), \quad f_{y}=-e^{-y} \sin (2 x) . \\
f_{x x}=-4 e^{-y} \sin (2 x), \quad f_{x y}=-2 e^{-y} \cos (2 x), \quad f_{y y}=e^{-y} \sin (2 x) .
\end{gathered}
$$

6. (15 points) The point $(x, y, z)=(2,-1,0)$ lies on the surface S :

$$
x^{2}-3 y^{2}+x z-4 z^{2}=1 .
$$

Find the equation of the tangent plane to the surface S at $(2,-1,0)$, in the form $a x+b y+c z=d$.

Solution. We have $F(x, y, z)=x^{2}-3 y^{2}+x z-4 z^{2}$. So,

$$
F_{x}=2 x+z, \quad F_{y}=-6 y, \quad F_{z}=x-8 z .
$$

The equation of the tangent plane to the surface S at $(2,-1,0)$ is:

$$
F_{x}(2,-1,0)(x-2)+F_{y}(2,-1,0)(y+1)+F_{z}(2,-1,0)(z-0)=0 .
$$

That is,

$$
4(x-2)+6(y+1)+2 z=0 \quad \text { or, } \quad 2 x+3 y+z=1 .
$$

7. The temperature at any point (x, y) is given by $T(x, y)=10-x^{2}-2 y^{2}$.
(a) (8 points) Find the rate of change of temperature at point $P=(1,0)$ in the direction toward the point $(0,2)$.

Solution.

$$
T_{x}(x, y)=-2 x, \quad T_{y}(x, y)=-4 y
$$

Let $Q=(0,2)$. The unit vector along $\overrightarrow{P Q}=\langle-1,2\rangle$ is $\vec{u}=\left\langle\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle$. The rate of change of T at point $P=(1,0)$ in the direction toward the point Q is

$$
D_{\vec{u}} T(1,0)=\nabla T(1,0) \cdot \vec{u}=\langle-2,0\rangle \cdot \vec{u}=\frac{2}{\sqrt{5}} .
$$

(b) (10 points) In which direction does the temperature increase fastest at P ? Find the maximum rate of increase of the temperature at P.

Solution. The temperature increase fastest at P in the direction of the gradient vector $\nabla T(1,0)=\langle-2,0\rangle$.

The maximum rate of increase of the temperature at P is $|\nabla T(1,0)|=\sqrt{(-2)^{2}+0^{2}}=2$.

