Math 2263	Name (Print):	
Fall 2014	Student ID:	
Midterm 1	Section Number: 001	
October 2, 2014	Teaching Assistant:	
Time Limit: 50 minutes	Signature:	

This exam contains 7 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions - correct answers without work will not be awarded points.

Do not give numerical approximations to quantities such as $\sin 5$, π , $\ln(3)$ or $\sqrt{2}$. However, you should simplify $\cos \frac{\pi}{2} = 0$, $e^0 = 1$, and so on.

1	15 pts	
2	12 pts	
3	$15 \mathrm{~pts}$	
4	10 pts	
5	$15 \mathrm{~pts}$	
6	15 pts	
7	18 pts	
TOTAL	100 pts	

1. (a) (6 points) Find the point at which the given lines intersect:

 $L_1: x = 1 + t, y = 1 - t, z = 2t$ and $L_2: x = 4 + 2s, y = 1 + s, z = 1 - s.$

Solution. We need to find t and s such that 1 + t = 4 + 2s, 1 - t = 1 + s and 2t = 1 - s. Solving first two equations we get t = 1, s = -1 which satisfy the third equation too. So, the point of intersection is (2, 0, 2).

(b) (9 points) Find an equation for the plane which contains both lines.

Solution. The direction vectors of the lines L_1 and L_2 are $\vec{v_1} = \langle 1, -1, 2 \rangle$ and $\vec{v_2} = \langle 2, 1, -1 \rangle$. Note that $\vec{v_1}$ and $\vec{v_2}$ both lie on the plane. The normal vector to the plane $\vec{v_1} \times \vec{v_2} = \langle -1, 5, 3 \rangle$. The plane passes through the point (2, 0, 2). Hence, the equation for the plane is

$$(-1)(x-2) + 5(y-0) + 3(z-2) = 0$$
, or $x - 5y - 3z + 4 = 0$.

2. (12 points) Find an equation for the surface in (x, y, z)-space obtained by rotating the ellipse $x^2 + 4y^2 = 1$ of the (x, y)-plane **about the x-axis**.

Solution. Take any point (x, y, z) on the surface. The distance from the x-axis is $\sqrt{y^2 + z^2}$, which replaces |y| in the given equation. So the equation for the surface of revolution is $x^2 + 4y^2 + 4z^2 = 1$.

Alternate Solution. If we rotate an ellipse $x^2 + 4y^2 = 1$ with center at (0, 0) in the (x, y)-plane about the x-axis, we will get an ellipsoid in 3-dimensional space with center at (0, 0, 0).

Say, the equation of the ellipsoid is $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Intersection with xy-plane is $x^2 + 4y^2 = 1$, which gives $a = 1, b = \frac{1}{2}$.

Intersection with yz-plane is a circle of radius $\frac{1}{2}$, that is $y^2 + z^2 = \frac{1}{4}$, which gives $c = \frac{1}{2}$. So, the equation of the ellipsoid is

$$x^2 + 4y^2 + 4z^2 = 1.$$

3. (a) (5 points) Find the domain of the function $f(x,y) = \sqrt{1-x^2} - \sqrt{y}$.

Solution. The domain of $f: D = \{(x, y) : 1 - x^2 \ge 0, y \ge 0\} = \{(x, y) : |x| \le 1, y \ge 0\}.$

(b) (10 points) Evaluate the limit

$$\lim_{(x,y)\to(0,0)}\frac{x^2 + xy - y^2}{x^2 - y^2}$$

or state that it does not exist, giving reasons.

Solution. We take limit $(x, y) \to (0, 0)$ along the line y = mx, $m \neq \pm 1$. The corresponding limit becomes

$$\lim_{x \to 0} \frac{x^2 + x \cdot mx - (mx)^2}{x^2 - (mx)^2} = \lim_{x \to 0} \frac{1 + m - m^2}{1 - m^2} = \frac{1 + m - m^2}{1 - m^2}.$$

The limit clearly depends on m. For example, the limit = 1 if m = 0 but the limit = $\frac{5}{3}$ if $m = \frac{1}{2}$. Hence, the limit does not exist.

4. (10 points) Suppose z = f(x, y) is a function with partial derivatives $f_x(0,3) = -1$ and $f_y(0,3) = 2$. If x and y are both functions of t:

$$x = 1 - t \quad \text{and} \quad y = 2t + t^2,$$

find $\frac{dz}{dt}$ at t = 1.

Solution. By chain rule,

$$\frac{dz}{dt} = f_x(x(t), y(t))\frac{dx}{dt} + f_y(x(t), y(t))\frac{dy}{dt}.$$

We have $\frac{dx}{dt} = -1$ and $\frac{dy}{dt} = 2 + 2t$. Plugging in t = 1, we obtain

$$\left. \frac{dz}{dt} \right|_{t=1} = f_x(0,3) \cdot (-1) + f_y(0,3) \cdot 4 = (-1) \cdot (-1) + 2 \cdot 4 = 9.$$

- October 2, 2014
- 5. (15 points) For the function $f(x, y) = e^{-y} \sin 2x$, find the second partial derivatives

$$f_{xx} = \frac{\partial^2 f}{\partial x^2}, \quad f_{xy} = \frac{\partial^2 f}{\partial y \partial x} \quad \text{and} \quad f_{yy} = \frac{\partial^2 f}{\partial y^2}.$$

Solution.

$$f_x = 2e^{-y}\cos(2x), \quad f_y = -e^{-y}\sin(2x).$$

$$f_{xx} = -4e^{-y}\sin(2x), \quad f_{xy} = -2e^{-y}\cos(2x), \quad f_{yy} = e^{-y}\sin(2x).$$

6. (15 points) The point (x, y, z) = (2, -1, 0) lies on the surface S:

$$x^2 - 3y^2 + xz - 4z^2 = 1.$$

Find the equation of the tangent plane to the surface S at (2, -1, 0), in the form ax+by+cz = d.

Solution. We have $F(x, y, z) = x^2 - 3y^2 + xz - 4z^2$. So,

$$F_x = 2x + z$$
, $F_y = -6y$, $F_z = x - 8z$.

The equation of the tangent plane to the surface S at (2, -1, 0) is:

$$F_x(2,-1,0)(x-2) + F_y(2,-1,0)(y+1) + F_z(2,-1,0)(z-0) = 0.$$

That is,

$$4(x-2) + 6(y+1) + 2z = 0$$
 or, $2x + 3y + z = 1$

- 7. The temperature at any point (x, y) is given by $T(x, y) = 10 x^2 2y^2$.
 - (a) (8 points) Find the rate of change of temperature at point P = (1,0) in the direction toward the point (0,2).

Solution.

$$T_x(x,y) = -2x, \quad T_y(x,y) = -4y,$$

Let Q = (0, 2). The unit vector along $\vec{PQ} = \langle -1, 2 \rangle$ is $\vec{u} = \langle \frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$. The rate of change of T at point P = (1, 0) in the direction toward the point Q is

$$D_{\vec{u}}T(1,0) = \nabla T(1,0) \cdot \vec{u} = \langle -2,0 \rangle \cdot \vec{u} = \frac{2}{\sqrt{5}}.$$

(b) (10 points) In which direction does the temperature increase fastest at P? Find the maximum rate of increase of the temperature at P.

Solution. The temperature increase fastest at P in the direction of the gradient vector $\nabla T(1,0) = \langle -2,0 \rangle$.

The maximum rate of increase of the temperature at P is $|\nabla T(1,0)| = \sqrt{(-2)^2 + 0^2} = 2$.