Math 2263	Name (Print):	
Fall 2014	Student ID:	
Midterm 2	Section Number: 001	
November 6, 2014	Teaching Assistant:	
Time Limit: 50 minutes	Signature:	

This exam contains 6 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions - correct answers without work will not be awarded points.

Do not give numerical approximations to quantities such as $\sin 5$, π , $\ln(3)$ or $\sqrt{2}$. However, you should simplify $\cos \frac{\pi}{2} = 0$, $e^0 = 1$, and so on.

1	$20 \mathrm{~pts}$	
2	$15 \mathrm{~pts}$	
3	20 pts	
4	20 pts	
5	10 pts	
6	15 pts	
TOTAL	100 pts	

1. (20 points) Use the method of Lagrange multipliers to find the extreme values of the function f(x,y) = xy on the ellipse $\frac{x^2}{4} + y^2 = 1$.

2. (15 points) Transform the following integral into **polar coordinates** with appropriate limits for r and θ where D is a disk enclosed by the circle $x^2 + y^2 = 4x$:

$$\iint_D f(x,y) dA.$$

[Note that you cannot evaluate the integral since the function f is unknown.]

3. (20 points) Find the *x*-component of the center of mass of a triangular lamina *D* with vertices at (0,0), (1,0) and (0,1) if the density of mass function is $\rho(x,y) = y$.

- 4. (20 points) Consider the solid region E which lies within the cylinder $x^2 + y^2 = 1$, above the xy-plane and below the paraboloid $z = 1 + x^2 + y^2$.
 - (a) (5 points) Sketch the solid region E.

(b) (15 points) Use cylindrical coordinates to compute the volume of E.

5. (10 points) Let E be the portion of the ball $x^2 + y^2 + z^2 \le 4$ that lies in the octant $x \le 0, y \ge 0, z \ge 0$. Express the solid region E in terms of spherical coordinates.

6. (15 points) Sketch the region of integration and evaluate the integral

$$\int_0^1 \int_{x^{1/3}}^1 \frac{1}{y^4 + 1} dy dx.$$

[Hint: Switch the order of integration.]