Math 2263
Fall 2014
Midterm 2
November 6, 2014
Time Limit: 50 minutes

Name (Print):
Student ID:
Section Number: 001
\qquad

Teaching Assistant:
Signature:
\qquad
\qquad

This exam contains 6 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions - correct answers without work will not be awarded points.

Do not give numerical approximations to quantities such as $\sin 5, \pi, \ln (3)$ or $\sqrt{2}$. However, you should simplify $\cos \frac{\pi}{2}=0, e^{0}=1$, and so on.

1	20 pts	
2	15 pts	
3	20 pts	
4	20 pts	
5	10 pts	
6	15 pts	
TOTAL	100 pts	

1. (20 points) Use the method of Lagrange multipliers to find the extreme values of the function $f(x, y)=x y$ on the ellipse $\frac{x^{2}}{4}+y^{2}=1$.
2. (15 points) Transform the following integral into polar coordinates with appropriate limits for r and θ where D is a disk enclosed by the circle $x^{2}+y^{2}=4 x$:

$$
\iint_{D} f(x, y) d A
$$

[Note that you cannot evaluate the integral since the function f is unknown.]
3. (20 points) Find the x-component of the center of mass of a triangular lamina D with vertices at $(0,0),(1,0)$ and $(0,1)$ if the density of mass function is $\rho(x, y)=y$.
4. (20 points) Consider the solid region E which lies within the cylinder $x^{2}+y^{2}=1$, above the $x y$-plane and below the paraboloid $z=1+x^{2}+y^{2}$.
(a) (5 points) Sketch the solid region E.
(b) (15 points) Use cylindrical coordinates to compute the volume of E.
5. (10 points) Let E be the portion of the ball $x^{2}+y^{2}+z^{2} \leq 4$ that lies in the octant $x \leq 0, y \geq$ $0, z \geq 0$. Express the solid region E in terms of spherical coordinates.
6. (15 points) Sketch the region of integration and evaluate the integral

$$
\int_{0}^{1} \int_{x^{1 / 3}}^{1} \frac{1}{y^{4}+1} d y d x
$$

[Hint: Switch the order of integration.]

