Math 2263
Fall 2014
Midterm 3
December 2, 2014
Time Limit: 50 minutes

Name (Print):
Student ID:
Section Number: 001
\qquad

Teaching Assistant:
Signature:
\qquad
\qquad

This exam contains 6 problems. Answer all of them. Point values are in parentheses. You must show your work to get credit for your solutions - correct answers without work will not be awarded points.

Do not give numerical approximations to quantities such as $\sin 5, \pi, \ln (3)$ or $\sqrt{2}$. However, you should simplify $\cos \frac{\pi}{2}=0, e^{0}=1$, and so on.

1	20 pts	
2	15 pts	
3	15 pts	
4	20 pts	
5	15 pts	
6	15 pts	
TOTAL	100 pts	

1. (20 points) Evaluate the following double integral

$$
\iint_{R} e^{\frac{x-y}{x+y}} d A
$$

where R is the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
2. (15 points) Show that line integral given by

$$
\oint_{C} x y^{2} d x+\left(x^{2} y+3 x\right) d y
$$

around any circle C (in counterclockwise orientation) depends only on the area of the circle and not on its location in the plane.
3. (15 points) Find a potential function for the vector field $\vec{F}=\left\langle 3 x^{2} y+y^{2}, x^{3}+2 x y+3 y^{2}\right\rangle$.
4. (20 points) Find the flux of $\vec{F}=y \vec{i}+x \vec{j}+z \vec{k}$ outward through the portion of the cylinder $x^{2}+z^{2}=4$ in the first octant and bounded by the plane $y=1$.
5. (15 points) Find the equation of the tangent plane to the surface $\vec{r}(u, v)=\left\langle u^{2}-v^{2}, v^{3}, 2 u v\right\rangle$ at the point $P=(0,-1,-2)$.
6. (15 points) Find the work done by the force field

$$
\vec{F}(x, y)=\left\langle y e^{x y}, x e^{x y}\right\rangle
$$

as it acts on a particle moving from $P=(-1,0)$ to $Q=(1,0)$ along the semicircular arc C given by $\vec{r}(t)=\langle-\cos t, \sin t\rangle, 0 \leq t \leq \pi$.

