5654 Class comments 1, Spring 2015

1 Facts about Riemann-Stieltjes integration

The definition of a Riemann-Stieltjes sum is given in the notes in Section 1.2.3, on page 17. We repeat it here, but refer to the notes for the definition of the Riemann-Stieltjes integral.

Definition 1 (Riemann-Stieltjes sums for a partition) Let f and g be arbitrary real-valued functions on an interval [a,b] of \mathbb{R} . A partition P for [a,b] is a finite sequence of of points x_0, x_1, \ldots, x_n in [a,b] such that $a = x_0 \le x_1 \le \ldots \le x_n = b$.

A refinement Q of a partition P of [a,b] is any partition of [a,b] which contains P as a subsequence.

A Riemann-Stieltjes sum for the partition P and the functions f, g is any sum of the form

$$\sum_{i=1}^{n} f(\xi_{i}) (g(x_{i}) - g(x_{i-1}))$$

where for each $i, \xi_i \in [x_{i-1}, x_i]$.

Definition 2 (The Cauchy property for Riemann-Stieltjes sums) Let fand g be arbitrary real-valued functions on an interval [a, b] of \mathbb{R} . Suppose that for each $\varepsilon > 0$ there exists a partition P_{ε} , such that for any partitions Q_1 and Q_2 which are refinements of P, any Riemann-Stieltjes sums s_1 for Q_1 , f, g and any Riemann-Stieltjes sum s_2 for Q_2 , f, g, $|s_1 - s_2| < \varepsilon$. Then we say that the Riemann-Stieltjes sums for f, g on [a, b] have the Cauchy property.

Lemma 1 (Alternate form of the Cauchy property) Let f and g be arbitrary real-valued functions on an interval [a, b] of \mathbb{R} . The following statements are equivalent:

- (i) The Riemann-Stieltjes sums for f, g on [a, b] have the Cauchy property.
- (ii) For each $\varepsilon > 0$ there exists a partition P_{ε} and a number L_{ε} , such that for any partitions Q which is a refinement of P, and any Riemann-Stieltjes sums s for $Q, f, g, |s - L_v are psilon| < \varepsilon$.

Proof

(i) \implies (ii) Let $\varepsilon > 0$ be given. By the Cauchy property there exists a partition P_{ε} , such that for any partitions Q_1 and Q_2 which are refinements of P, any Riemann-Stieltjes sums s_1 for Q_1, f, g and any Riemann-Stieltjes sum s_2 for $Q_2, f, g, |s_1 - s_2| < \varepsilon$.

Let L_{ε} be any Riemann-Stieljes sum for P_{ε} . For any partition Q which is a refinement of P_{ε} , and any Riemann-Stieltjes sum s for Q, f, G, taking $Q_1 = Q$, $Q_2 = P_{\varepsilon}, s_1 = s$ and $s_2 = L_{\varepsilon}$ in the previous statement shows that (ii) holds.

(ii) \implies (i) Let $\varepsilon > 0$ be given. By (ii), there exists a partition P_{ε} and a number L_{ε} , such that for any partitions Q which is a refinement of P, and any Riemann-Stieltjes sums s for $Q, f, g, |s - L| < \varepsilon/2$. Let Q_1 and Q_2 be partitions which are refinements of P, let s_1 be any Riemann-Stieltjes sum for Q_1, f, g and let s_2 be any Riemann-Stieltjes sum for Q_2, f, g ,

By (ii), $|s_1 - L_{\varepsilon}| < \varepsilon/2$ and $|s_2 - L_{\varepsilon}| < \varepsilon/2$. Hence $|s_1 - s_2| < \varepsilon$, so the Cauchy property holds.

Lemma 2 (The Cauchy criterion for Riemann-Stieltjes sums) Let f and g be real-valued functions on an interval [a, b] of \mathbb{R} . Suppose that the Riemann-Stieltjes sums for f, g on [a, b] have the Cauchy property. Then the Riemann-Stieltjes integral $\int_a^b f \, dg$ exists.

Proof The proof is similar to the proof of the corresponding fact for sequences, and is omitted.

Lemma 3 (Additivity on pieces) Let f and g be arbitrary real-valued functions on an interval [a,b] of \mathbb{R} , and let $c \in [a,b]$. Suppose that $\int_a^c f \, dg$ exists and $\int_c^b f \, dg$ exists. Then $\int_a^b f \, dg$ exists and

$$\int_{a}^{b} f \, dg = \int_{a}^{c} f \, dg + \int_{c}^{b} f \, dg$$

Proof Let $\varepsilon > 0$ be given.

Let P_{ε}^1 be a partition for [a, c] such that for partition Q_1 of [a, c] which is a refinment of P_{ε}^1 , and any Riemann-Stieltjes sum s_1 for Q_1 ,

$$\left|\int_{a}^{c} f \, dg - s_1\right| < \varepsilon$$

Let P_{ε}^2 be a partition for [c, b] such that for partition Q_2 of [c, b] which is a refinment of P_{ε}^2 , and any Riemann-Stieltjes sum s_2 for Q_2 ,

$$\left| \int_{c}^{b} f \, dg - s_2 \right| < \varepsilon.$$

Let P_{ε} be the sequence of points obtained by concatenating the sequences P_{ε}^1 and P_{ε}^2 in an appropriate manner. More precisely, if P_{ε}^1 is the sequence x_0, x_1, \ldots, x_n and P_{ε}^2 is the sequence y_0, y_1, \ldots, y_n , let P_{ε} be the sequence

$$x_0, x_1, \ldots, x_n, y_1, y_2, \ldots, y_m$$

Denote the sequence P_{ε} by z_0, \ldots, z_{m+n} . Since $x_0 = a$ we have $z_0 = a$. Since $y_n = b$ we have $z_{m+n} = b$. Since $x_n = c$ we have $z_n = c$. Since also $y_0 = c = z_n$, we have $y_j = z_{n+j}$ for $j = 0, 1, \ldots, m$.

Let Q a partition of [a, b] which is a refinement of P_{ε} . Let Q be the sequence of points t_0, \ldots, t_k , where $a = t_0$ and $b = t_k$. Since Q is a refinement of P_{ε} , there is some index $r \in \{0, \ldots, k\}$ such that $t_r = c$. Let Q_1 be the sequence t_0, \ldots, t_r and let Q_2 be the sequence t_r, \ldots, t_k . Then Q_1 is a partition of [a, c]which is a refinement of P_{ε}^1 and Q_2 is a partition of [c, b] which is a refinement of P_{ε}^2 .

For any Riemann-Stieljes sum s for Q, f, G on [a, b], let

$$s = \sum_{i=1}^{k} f(\xi_i) (g(t_i) - g(t_{i-1})),$$

where ξ_i be a point in $[t_{i-1}, t_i]$ for each $i = 1, \ldots, k$. Let

$$s_{1} = \sum_{i=1}^{r} f(\xi_{i}) (g(t_{i}) - g(t_{i-1})), \ s_{2} = \sum_{i=r+1}^{k} f(\xi_{i}) (g(t_{i}) - g(t_{i-1}))$$

Then Let f and g be arbitrary real-valued functions on an interval $[a, b] s_1$ is a Riemann-Stieltjes sum for Q_1, f, g on $[a, c], s_2$ is a Riemann-Stieltjes sum for Q_2, f, g obn [c, b].

It is easy to check that Q_1 is a refinement of P_{ε}^1 and Q_2 is a refinement of P_{ε}^2 . Hence

$$\left|\int_{a}^{c} f \, dg - s_{1}\right| < \varepsilon, \ \left|\int_{a}^{c} f \, dg - s_{1}\right| < \varepsilon,$$

and so

$$\left|\int_{a}^{c} f \, dg + \int_{c}^{b} f \, dg - s\right| < 2\varepsilon.$$

The lemma follows.

We have $\int_a^b f \, dg = \int_a^b f(x) \, dx$ when g(x) = x for all x. Thus a special case of the next lemma shows that any continuous function on a closed finite interval is Riemann-integrable.

Lemma 4 (A basic case) Let f be a continuous real-valued function on [a, b]and let g be monotonic increasing real-valued function [a, b]. Then $\int_a^b f \, dg$ exists. **Proof** Since f is continuous on the closed bounded interval [a, b], it is uniformly continuous on this interval.

Let $\varepsilon > 0$ be given. Let $\delta > 0$ be such that for any $x, y \in [a, b]$ with $|x - y| < \delta$, $|f(x) - f(y)| < \varepsilon$.

Let P_{ε} be any partition $a = x_0 \leq x_1 \leq \ldots \leq x_n = b$ such that $x_i - x_{i-1} < \delta$ for $i = 1, \ldots, n$. Let

$$L_{\varepsilon} = \sum_{i=1}^{n} f(x_i) \left(g(x_i) - g(x_{i-1}) \right).$$

Let Q be any partition of [a, b] which is a refinement of P_{ε} . Let the partition points be $a = y_0 \leq y_1 \leq \ldots \leq y_m = b$, and let

$$s = \sum_{j=1}^{m} f(\eta_j) \left(g(y_j) - g(y_{j-1}) \right)$$
(1)

be a Riemann-Stieltjes sum for Q, f, g on [a, b], where $\eta_j \in [y_{j-1}, y_j]$ for each j.

Since x_0, \ldots, x_n is a subsequence of y_0, \ldots, y_m , for each $i = 0, 1, \ldots, n$ there exists an integer r_i such that $x_i = y_{r_i}$. We can choose the integers r_i such that $0 = r_0 \leq r_1 \leq r_n = n$. Then

$$s = \sum_{i=1}^{n} \sum_{j=q_{i-1}+1}^{q_i} f(\eta_j) \left(g(y_j) - g(y_{j-1}) \right).$$

Let $\eta'_j = x_i$ for $q_{i-1} + 1 \le j \le q_j$. Let

$$s' = \sum_{j=1}^{m} f(\eta'_j) (g(y_j) - g(y_{j-1})), \qquad (2)$$

so that

$$s' = \sum_{i=1}^{n} \sum_{j=q_{i-1}+1}^{q_i} f\left(\eta'_j\right) \left(g\left(y_j\right) - g\left(y_{j-1}\right)\right) = \sum_{i=1}^{n} \sum_{j=q_{i-1}+1}^{q_i} f\left(x_i\right) \left(g\left(y_j\right) - g\left(y_{j-1}\right)\right)$$
$$= \sum_{i=1}^{n} f\left(x_i\right) \left(g\left(x_i\right) - g\left(x_{i-1}\right)\right) = L_{\varepsilon}.$$

For $q_{i-1} + 1 \leq j \leq q_i$, we have $[y_{q_{i-1}}, y_{q_i}] \subset [x_{i-1}, x_i]$. Hence $|\eta'_j - \eta_j| < \delta$, and so $|f(\eta'_j) - f(\eta_j)| < \varepsilon$. Comparing (1) and (2), we have

$$|s - L_{\varepsilon}| \leq \sum_{i=1}^{n} \sum_{j=q_{i-1}+1}^{q_i} \varepsilon \left(g\left(y_j\right) - g\left(y_{j-1}\right)\right) = \varepsilon \left(g\left(b\right) - g\left(a\right)\right)$$

Thus the Riemann-Stieltjes partitions for f, g on [a, b] have the Cauchy property, and so $\int_a^b f \, dg$ exists.