
5654 Homework 1 solutions

Problem 1

Let X be a nonnegative random variable with finite range. Give a complete
proof of the formula

EX =

∫ ∞
0

(1− FX(t)) dt

which is given in 1.2.2. In writing down your proof, denote the elements of the
range of X by a1, . . . , ak, where a1 < . . . < ak.

Solution There are lots of ways to write up a proof. Here is one.
By the definition of expected value of a discrete random variable,

EX =

n∑
i=1

aiP (X = ai) .

Let a0 = 0. Then

EX =

k∑
i=1

i∑
j=1

(aj − aj−1)P (X = ai) =

k∑
j=1

(aj − aj−1)

k∑
i=j

P (X = ai)

=

n∑
j=1

(aj − aj−1)P (X > aj−1) =

k∑
j=1

(aj − aj−1) (1− FX (aj−1)) .

Since FX(t) = FX (aj−1) on the interval [aj−1, aj), it is easy to check from the
definitions that the final sum is

∫ ak

0
(1− FX(t)) dt. Since 1 − FX(t) = 0 for

t ≥ ak, this integral is the same as
∫∞
0

(1− FX(t)) dt.

Problem 1.2.9

Assume the integral exists. We will prove a contradiction exists.
Let ε = p2/2. Let Pε be a partition of [0, 5] with the property stated in

the definition of Riemann-Stieltjes integrability on page 17, so that for every
refinement Q of Pε, any Riemann-Stieltjes sums using Q, g, g are within ε of∫ 5

0
g dg.
Let Q be any refinement of Pε which includes the point 2.
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Then Q is a partition using points 0 = y0 ≤ y1 ≤ . . . ≤ yn such that yj = 2
for some index j.

Let k be the last index before j such that yk < yj . Then yk+1 = yj = 2. Let
s1 be a Riemann-Stieltjes sum for the partition Q using evaluation points ξi for
each interval [yi−1, yi], such that ξk+1 = yk < 2, so that g (ξk+1) = 0.

Let s2 be a Riemann-Stieltjes sum for the partition Q using evaluation points
ξ̃i, such that ξ̃i = ξi for each interval [yi−1, yi] except that ξ̃k+1 = 2, so that

g
(
ξ̃k+1

)
= p.

Since g (yk+1)− g (yk) = g (2)− g (yk) = p− 0 = p, we see that s2− s1 = p2.

But by assumption,
∣∣∣si − ∫ 5

0
g dg

∣∣∣ < ε = p2/2, so |s1 − s2| < p2, contradiction.

Problem 1.2.26

We are given that G,H,K are independent. According to the definition at the
top of page 27, this means that the indicators IG, IH , IK form an independent
family of random variables. Hence in particular

P (IG = 1, IH = 0, IK = 1) = P (IG = 1)P (IH = 0)P (IK = 1) .

This is exactly the statement that

P (GHK) = P (G)P (H)P (K) .

Problem 1.3.2

There are several ways to write down a justification for each formula in this
problem. Because of the text’s convention about conditioning on events of
probability zero, we will have to be careful to include that case in our work.

As noted in class, and in the text on page 32, we always have the multiplied-
through form of the conditional probability formula,

P (GH) = P (G|H)P (H) ,

even in the case that P (H) = 0. So we can use that freely.

Justification of (i) Using the multiplied-through form of the conditional
probability formula twice, we have

P (GHF ) = P (G|HF )P (HF ) = P (G|HF )P (H|F )P (F ) .

Using the multiplied-through form of the conditional probability formula once,
we have

P (GHF ) = P (GH|F )P (F ) .

Thus

P (G|HF )P (H|F )P (F ) = P (GH|F )P (F ) .
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If P (F ) > 0 we can divide both sides of this equation by P (F ), and obtain
equation (i). On the other hand, if P (F ) = 0 the text’s definition of conditional
probability says that P (H|F ) = 0 and P (GH|F ) = 0, so (i) just says 0 = 0,
which is again true. Thus (i) holds in all cases.

Justification of (ii) Using the multiplied-through form of the conditional
probability formula,

P (GH) = P (G|H)P (H) .

Hence if P (G|H) = 0 we obviously have P (GH) = 0.
Conversely, if P (GH) = 0 then P (G|H)P (H) = 0. This last equation

forces P (G|H) = 0 if P (H) > 0. On the other hand if P (H) = 0 then
P (G|H) = 0 by the text’s definition. So (ii) holds.

Justification of (iii) If P (HK) = 0 then P (G|HK) = 0 by the text’s
definition and P (GH|HK) = 0 by the text’s definition. So (iii) holds in this
case.

Now we assume P (HK) > 0. Then

P (GH|HK) =
P (GHHK)

P (HK)
=
P (GHK)

P (HK)
= P (G|HK) ,

so (iii) holds in this case also. Incidentally, notice that H is certain to happen
given HK, so (iii) is physically clear.

Problem 1.3.4

(i) If P (HK) > 0, then P (H) > 0, so we can use the ordinary definition for
conditional expectation.

We have

P (GK|H) =
P (GHK)

P (HK)
=
P (GH)P (K)

P (H)P (K)

=
P (GH)

P (H)
= P (G|H) .

We are also asked to show that P (G|HK) = P (G|H) if P (K) = 1. Note
that if P (K) = 1 then from the definition we see that K is independent of any
set. Hence the previous fact can be applied if P (HK) > 0. If P (HK) = 0,
then since H = (HK)∪ (HKc) we have P (H) = P (HK) +P (Kc) = 0. Hence
by our convention we have P (G|HK) = 0 = P (G|H)

(ii) If P (H) = 0 then the stated equation holds by definition. Assume from
now on that P (H) > 0.

We have P (GKH) = P (GH)P (K). Hence

P (GKH)

P (H)
=

(
P (GH)

P (H)

)
P (K) ,

so P (GK|H) = P (G|H)P (K) as claimed.
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