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By definition, we have
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2.3.4 #5 TFind the real and imaginary parts of exp (ef). |
If z = x + iy, then we have
+1 E3 Lian® e # . 4 . : - .
o = gt = T syt sINY — €7 €Y o5 (" siny) + ie "V gin (e siny) .
Therefore the real part of ¢ is
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[;3.4 #6 Determine all values of 2, ¢* and (— 1), _[

Here goes more computation, where each & ranges over the integers:
2 = ¢il82 _ gilloglal+ing 2) _ ,ilogl2l —2nk ~

_#-'
y . . 3 . = m T )
it = gilogt — illoglil+iarg ) _ E;Iuglll€~{?+2#k] _ E-{?+21r.i;}lv" >

[_1:]91 — e?i{]ug|—!|+£arg{—l}jl _ E?i]ugi]|e—2{x+2wk] — (::Ew"‘"‘”k,lff

2.3.4 #10 Show that the roots of the binomial equation z" = q are the vertices of a regular
polygon.

The roots of the binomial equation are given by

el V]_rﬂel- u“ Ixk :

where 1 < I < n Therefore, they all lie on a circe centered at the origin with radius 7/ i), and are
equally spaced angles since the arguments differ by 2£. That is, they form a regular ri-gon, .
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|_3.l.2 #1 If S is a metric space with distance function d (x,y), show that 5 with the diqrun;‘
function 6 (x, ) = - is also a metric space.
| ' PRI )

dlza)

1+dlx,u)

First we see if § (x,y) = 0, then -0,and sod (z,y) = 0,and = = y.

Next, if & = y, then
dix,y) 0

Mz y) = —————r
S 1l +d(z, y’:l 1 + 10

Finally, since d (x, i) is a distance function, we have
diz,z) <d(x,y)+dly,z)
diz,z)<d(xy) +dly, z)
+2d(y, 2)d(z,y)+d(x,z)d(z,y)d{y 2)
d(z,z)d(x,y)+d(z,z)d(y, )
td(z, 2)d(z,y)d(y,z) +d(z,2) d(z,y) +d(y,2) +2d (y,2)d(z,y)
+d(z, 2)d(z,y)d(y, z) +d(z,z)d(z,y)
+d(z,2)d(y z)+d(z,z)d(z,y)d(y,z)
d(z,z)(1+d(z,y)+d(yz)+d(z,y dly, 2)) <d(z,y) (1+d(y, z) +d(z z)4 iz, z))
oy, z)
(14+d(z,y)+d(z,z)+d(z,z) diz,y))
diz,z)(1g(z,y)) (L +d(y,2)) <d{z,y) (1 + d{z,z))(1+d(y z))
+d(y 2) (1 +d(z,z)) (1 +dlzy))
diz,z)(1+d(z,y)) (1 +dly z)) B diz,y) (1 +d(x z)) (1 +d(y, z))
(1+d(x,2)(1+d{zy)(1+dy, ._ = (1+d(x,2)(1+d{zy))(1+dy, 2))
d(y.z)(1+d(x,2)) (1 +d(x,y))
l +d(z 2z (1 +d(z,y) (1 4+dy z))

B T, ;._l . < ilr, :'J'.'. L i i'_,l I
1+dz.z) ~ 1+d(z,y) 1+dlyz)

6(x,2) <d(x,y)+d(y 2).

)

Thus. the new distance function satisfies the triangle inequality, and 5 is a metric space. m
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'3.1.2#7 Show the accumulation points of any set form a closed set,

Consider a set X, its closure X~ and the set of accumulation points X . If we say X' are the
isolated points of X, the complement of the set of accumulation points is

(XM = (x~\Xx)°
which is the setof points t € X~ orx € X Ifzx € I[X‘]IC, which is open, so r is an interior
point of the complement of X, If = is isolated in X, then there is a neighborhood of & whose
itersection with X is just & Therefore, z is in the interior of the commplement of X' 4. Thus, the

complement of the set of accumulations points is open, and the set of accumulation points 1s
closed. "

3.1.3#3 Prove that the closure of a connected set is connected. |

Consider a connected set X and assume there exist A, B € X~ such that AN B = 0 and

X~ = AU B. Then there are disjoint sets C' = AN X and D = B X such that CU D = X,
Since X is connected, then either ¢ or 2 must be empty, so that one of their closures is empty.
Therefore, X~ must be connected. "

3.1.3#4 Let A be the set of points (x,y) € R* with z = 0, |y| < 1, and let 3 be the set with
r >0,y =sin(2). Is AU B connected?

T

Since y = sin (%) is continuous when = > 0, it is connected. We can see that any poin in A is a
limit point of B, since any neighborhood of point in A contains an infinite number of points in 3.
Thus, the closure of B is A U B. By the previous problem, the closure of a connected set is
connected, so A U 3 is connected. .

3.1.4 #3 Use compactness to porve that a closed bounded set of real numbers hasd a maximum.

Let X be closed and bounded in & so that X is compact. Assume sup X' = x is not the maximum
of X, and define an open cover of X by

U = Upen {)\' | (—-DO,.T: - l) } .
T

Then for any x5 € X, there is some ny such that o — nl” = 1p, and this is in fact a cover. However,
any finite subset of I/ will have a maximum N € [¥ so that there is some g € X such that

Tg > T — %, and iz is not covered. That is, there is no finite subcover, contradicting the
compactness of X, Thus, there must be a maximum of every compact set in the real numbers.




314#4 IfE, D E, D Ey D ... is a decreasing sequence of nonempty compact sets, then
the intersection N>, E,, is not empty. Show by example that this need not be true if the sets are

merely closed. |

We know the arbitrary intersection of closed sets of closed, so M2, F, is closed. Futhermore,

> B, C E; since the sequence is decreasing, so the intersection is bounded, and thus compact.
Now consider a sequnce {x;} where z; € A; for each n. Then there exists a convergent subcover
with its limit in A. In fact, if we remove the first k sets, we will see that there is a convergent
subsequence with limit in A,. That is, the limit of the subsequence is in all A;, and must also
be in the intersection. Therefore, the intersection is nonempty. ™

|3.1.5 #1 Construct a topological mapping of the open disk |z < 1 onto the whole plane.

Consider a mapping f : {z : |z] < 1} = C given by f(z) = Z7;- Note that this mapping is
continuous where |z| # 1, so that it is continuous on our domain. To see the map is injective, let

f(z) = f(w). Then we have
z w

1=z 1w

which is equivalent to
2
z _1-|2
w 1= |w|’
_pal® .
Since :—_:-:;lig is purely real, it must be that z = ww for some x € [E. In that case,
: w2z _ Xz
I— [z l—lzz[ 1-zla2]

Rearranging, we get
r—z|zl=1-1x|z
which is only true if & = 1. Thatis, w = z, so that f is injective.

To show surjectivity, note that any ball |z| < e < 1 maps to a ball |w| < . Thus, taking a limit
as € — 1, we get |w| — oc, so the function in surjective. Thus we have a bijective contuous
function, and it is a homeomorphism. =

|3.l.5 #3 Prove that every continuous one-to-one mapping of a compact space is topological. |

Assume a mapping [ of a compact (metric) space X is continuous and one-to-one. Then the
image of f is also compact. If we consider a closed subset of X, then it must also be compact, so
its image is compact. However, every compact subset of a compact set in a metric space is closed,
so the image is closed. That is, f maps closed sets to closed sets, which means the inverse image
of f is continuous. Futhermore, since f is one-to-one onto its image, the inverse is also
one-to-one, so [ is topological. .
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3.2.2 #1 Give a precise definition of a single-valued branch of /1 + z + /1 — z in a suitable
region, and prove that it is analytic.

First begin by noting the principal branch of /= is given by C", {—o¢, 0]. Then shifting the values ,\,.
of z we find that C ', {—oc, —1] is a single-valued branch of /1 + z and T, [1, oc) is a single N
valued branch of /T — z. Taking the intersection, so that both functions are single-valued, a v@$ ¥ Uy]
single valued branch cut for /1 + z + /1 — zis C\, {(—00, 1] ,[1,20)}. [‘,‘b"j@

% 6 The derivative is given by FIIT - ?i]: Then the derivative is undefined at z = =1, but those are
excluded from our domain. In addition, we know +/z is analytic, and sums of analytic functions
are again analytic, so /z is given by C\ (=00, 0] is analytic. "

3.2.2 #2 Give a precise definition of a single-valued branch of log (log z) in a suitable region,
and prove that it is analytic.

The principal branch of log z is given by T (—o0,0]. Its image is the slit plane

{z =z +iy: |y < 7} Removing the interval (—oc, (] from the image would give another
single-valued function, and the inverse image of (—oc, 0] under log z is (0, 1. Therefore, a
single-valued branch of log (log 2} 1s C (—nc, 1].

Its derivative is ;z, which is undefined at = = 0, 1, which are not in our domain. Furthermore,

zlog
log z is analytic and the composition of analytic functions is analytic, so log (log z) is analytic, =



