By definition, we have

$$\cos i = \frac{e^{i \cdot i} + e^{-i \cdot i}}{2} = \frac{e^{-2} + e}{2} = \frac{1}{2e} + \frac{e}{2}.$$

Similarly, we compute

$$\sin i = \frac{e^{i \cdot i} - e^{-i \cdot i}}{2} = \frac{1}{2ie} - \frac{e}{2i} = \frac{-i}{2e} + \frac{ie}{2} = i\left(\frac{e}{2} - \frac{1}{2e}\right).$$

Finally, we compute

$$\begin{split} \tan{(1+i)} &= -i\frac{e^{i(1+i)} - e^{-i(1+i)}}{e^{i(1+i)} + e^{-i(1+i)}} = -i\frac{e^i e^{-1} - e^{-i}e}{e^i e^{-1} + e^{-i}e} \\ &= -i\frac{\frac{e^i}{e} - \frac{e}{e^i}}{\frac{e^i}{e} + \frac{e}{e^i}} \\ &= -i\frac{\frac{e^{2i}}{e^i} - \frac{e^2}{e^i}}{\frac{e^{2i}}{e^i} + \frac{e^2}{e^i}} = -i\frac{e^{2i} - e^2}{e^{2i} + e^2}. \end{split}$$

2.3.4 #5 Find the real and imaginary parts of $\exp(e^z)$.

If z = x + iy, then we have

$$e^{e^z} = e^{e^{x+iy}} = e^{e^x \cos y + ie^x \sin y} = e^{e^x \cos y} \cos (e^x \sin y) + ie^{e^x \cos y} \sin (e^x \sin y).$$

Therefore the real part of e^{e^z} is

$$e^{e^x \cos y} \cos (e^x \sin y)$$

and the imaginary part is

$$e^{e^x \cos y} \sin (e^x \sin y)$$
.

2.3.4 #6 Determine all values of 2^i , i^i and $(-1)^{2i}$.

Here goes more computation, where each k ranges over the integers:

$$2^{i} = e^{i \log 2} = e^{i(\log|2| + i \arg 2)} = e^{i \log|2|} e^{-2\pi k} . \checkmark$$

$$i^{i} = e^{i \log i} = e^{i(\log|i| + i \arg i)} = e^{i \log|1|} e^{-\left(\frac{\pi}{2} + 2\pi k\right)} = e^{-\left(\frac{\pi}{2} + 2\pi k\right)} . \checkmark$$

$$(-1)^{2i} = e^{2i(\log|-1| + i \arg (-1))} = e^{2i \log|1|} e^{-2(\pi + 2\pi k)} = e^{2\pi + 4\pi k} . \checkmark$$

2.3.4 #10 Show that the roots of the binomial equation $z^n = a$ are the vertices of a regular polygon.

The roots of the binomial equation are given by

$$z = \sqrt[n]{|a|}e^{i\frac{\arg a + 2\pi k}{n}},$$

where $1 \le k \le n$ Therefore, they all lie on a circe centered at the origin with radius $\sqrt[n]{|a|}$, and are equally spaced angles since the arguments differ by $\frac{2\pi k}{n}$. That is, they form a regular n-gon.

3.1.2 #1 If S is a metric space with distance function d(x,y), show that S with the distance function $\delta(x,y) = \frac{d(x,y)}{1+d(x,y)}$ is also a metric space.

First we see if $\delta(x,y) = 0$, then $\frac{d(x,y)}{1+d(x,y)} = 0$, and so d(x,y) = 0, and x = y.

Next, if x = y, then

$$\delta(x,y) = \frac{d(x,y)}{1+d(x,y)} = \frac{0}{1+0} = 0.$$

Finally, since d(x, y) is a distance function, we have

$$d(x,z) \leq d(x,y) + d(y,z) \\ d(x,z) \leq d(x,y) + d(y,z) \\ + 2d(y,z)d(x,y) + d(x,z)d(x,y)d(y,z)$$

$$d(x,z)d(x,y) + d(x,z)d(y,z) + d(x,z)d(x,y) + d(x,z)d(x,y) + d(x,z)d(x,y) + d(x,z)d(x,y)d(y,z) + d(x,z)d(x,y)d(y,z) + d(x,z)d(x,y)d(y,z)$$

$$+ d(x,z)d(x,y)d(y,z) + d(x,z)d(x,y)d(y,z)$$

$$d(x,z)(1+d(x,y)+d(x,z)+d(x,z)d(x,y)) \leq d(x,y)(1+d(y,z)+d(x,z)+d(x,z)) + d(y,z)$$

$$(1+d(x,y)+d(x,z)+d(x,z)+d(x,z))d(x,y))$$

$$+ d(y,z)(1+d(x,z))(1+d(y,z)) + d(y,z)(1+d(x,z))(1+d(x,y))$$

$$+ d(y,z)(1+d(x,z))(1+d(x,y)) + d(y,z)$$

$$+ d(y,z)(1+d(x,z))(1+d(x,y)) + d(y,z)$$

$$+ d(y,z)(1+d(x,z))(1+d(x,y))(1+d(y,z))$$

$$+ \frac{d(x,z)}{1+d(x,z)}(1+d(x,z))(1+d(x,y))(1+d(y,z))$$

$$+ \frac{d(x,z)}{1+d(x,z)} \leq \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)}$$

$$\frac{d(x,z)}{1+d(x,z)} \leq \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)}$$

$$+ \frac{d(y,z)}{1+d(x,z)}(1+d(y,z))$$

Thus, the new distance function satisfies the triangle inequality, and S is a metric space.

3.1.2 #7 Show the accumulation points of any set form a closed set.

Consider a set X, its closure X^- and the set of accumulation points X^A . If we say X^I are the isolated points of X, the complement of the set of accumulation points is

$$(X^A)^C = (X^- \setminus X^O)^C$$

which is the set of points $x \notin X^-$ or $x \in X^I$. If $x \in (X^-)^C$, which is open, so x is an interior point of the complement of X^A . If x is isolated in X, then there is a neighborhood of x whose itersection with X is just x. Therefore, x is in the interior of the commplement of X^A . Thus, the complement of the set of accumulations points is open, and the set of accumulation points is closed.

3.1.3 #3 Prove that the closure of a connected set is connected.

Consider a connected set X and assume there exist $A, B \subset X^-$ such that $A \cap B = \emptyset$ and $X^- = A \cup B$. Then there are disjoint sets $C = A \cap X$ and $D = B \cap X$ such that $C \cup D = X$. Since X is connected, then either C or D must be empty, so that one of their closures is empty. Therefore, X^- must be connected.

3.1.3 #4 Let A be the set of points $(x, y) \in \mathbb{R}^2$ with x = 0, $|y| \le 1$, and let B be the set with x > 0, $y = \sin(\frac{1}{x})$. Is $A \cup B$ connected?

Since $y = \sin\left(\frac{1}{x}\right)$ is continuous when x > 0, it is connected. We can see that any poin in A is a limit point of B, since any neighborhood of point in A contains an infinite number of points in B. Thus, the closure of B is $A \cup B$. By the previous problem, the closure of a connected set is connected, so $A \cup B$ is connected.

3.1.4 #3 Use compactness to porve that a closed bounded set of real numbers hasd a maximum.

Let X be closed and bounded in \mathbb{R} so that X is compact. Assume $\sup X = x$ is not the maximum of X, and define an open cover of X by

$$U = \cup_{n \in \mathbb{N}} \left\{ X \cap \left(-\infty, x - \frac{1}{n} \right) \right\}.$$

Then for any $x_0 \in X$, there is some n_0 such that $x - \frac{1}{n_0} > x_0$, and this is in fact a cover. However, any finite subset of U will have a maximum $N \in \mathbb{N}$ so that there is some $x_0 \in X$ such that $x_0 > x - \frac{1}{N}$, and x_0 is not covered. That is, there is no finite subcover, contradicting the compactness of X. Thus, there must be a maximum of every compact set in the real numbers.

3.1.4 #4 If $E_1 \supset E_2 \supset E_3 \supset \dots$ is a decreasing sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} E_n$ is not empty. Show by example that this need not be true if the sets are merely closed.

We know the arbitrary intersection of closed sets of closed, so $\bigcap_{n=1}^{\infty} E_n$ is closed. Futhermore, $\bigcap_{n=1}^{\infty} E_n \subset E_1$ since the sequence is decreasing, so the intersection is bounded, and thus compact. Now consider a sequence $\{x_j\}$ where $x_j \in A_j$ for each n. Then there exists a convergent subcover with its limit in A. In fact, if we remove the first k sets, we will see that there is a convergent subsequence with limit in A_{k+1} . That is, the limit of the subsequence is in all A_j , and must also be in the intersection. Therefore, the intersection is nonempty.

3.1.5 #1 Construct a topological mapping of the open disk |z| < 1 onto the whole plane.

Consider a mapping $f: \{z: |z| < 1\} \to \mathbb{C}$ given by $f(z) = \frac{z}{1-|z|}$. Note that this mapping is continuous where $|z| \neq 1$, so that it is continuous on our domain. To see the map is injective, let f(z) = f(w). Then we have

$$\frac{z}{1-|z|} = \frac{w}{1-|w|}$$

which is equivalent to

$$\frac{z}{w} = \frac{1 - |z|^2}{1 - |w|}.$$

Since $\frac{1-|z|^2}{1-|w|^2}$ is purely real, it must be that z=xw for some $x\in\mathbb{R}$. In that case,

$$\frac{z}{1 - |z|^2} = \frac{xz}{1 - |xz|} = \frac{xz}{1 - x|z|}.$$

Rearranging, we get

$$x - x |z| = 1 - x |z|$$

which is only true if x = 1. That is, w = z, so that f is injective.

To show surjectivity, note that any ball $|z| < \epsilon < 1$ maps to a ball $|w| < \frac{1}{1-\epsilon^2}$. Thus, taking a limit as $\epsilon \to 1$, we get $|w| \to \infty$, so the function in surjective. Thus we have a bijective contuous function, and it is a homeomorphism.

3.1.5 #3 Prove that every continuous one-to-one mapping of a compact space is topological.

Assume a mapping f of a compact (metric) space X is continuous and one-to-one. Then the image of f is also compact. If we consider a closed subset of X, then it must also be compact, so its image is compact. However, every compact subset of a compact set in a metric space is closed, so the image is closed. That is, f maps closed sets to closed sets, which means the inverse image of f is continuous. Futhermore, since f is one-to-one onto its image, the inverse is also one-to-one, so f is topological.

3.2.2 #1 Give a precise definition of a single-valued branch of $\sqrt{1+z} + \sqrt{1-z}$ in a suitable region, and prove that it is analytic.

First begin by noting the principal branch of \sqrt{z} is given by $\mathbb{C}\setminus (-\infty,0]$. Then shifting the values of z we find that $\mathbb{C}\setminus (-\infty,-1]$ is a single-valued branch of $\sqrt{1+z}$ and $\mathbb{C}\setminus [1,\infty)$ is a single valued branch of $\sqrt{1-z}$. Taking the intersection, so that both functions are single-valued, a single valued branch cut for $\sqrt{1+z}+\sqrt{1-z}$ is $\mathbb{C}\setminus \{(-\infty,-1],[1,\infty)\}$.

those are

The derivative is given by $\frac{1}{\sqrt{1+z}} - \frac{1}{\sqrt{1-z}}$. Then the derivative is undefined at $z=\pm 1$, but those are excluded from our domain. In addition, we know \sqrt{z} is analytic, and sums of analytic functions are again analytic, so \sqrt{z} is given by $\mathbb{C} \setminus (-\infty, 0]$ is analytic.

3.2.2 #2 Give a precise definition of a single-valued branch of $\log(\log z)$ in a suitable region, and prove that it is analytic.

The principal branch of $\log z$ is given by $\mathbb{C} \setminus (-\infty, 0]$. Its image is the slit plane $\{z = x + iy : |y| < \pi\}$. Removing the interval $(-\infty, 0]$ from the image would give another single-valued function, and the inverse image of $(-\infty, 0]$ under $\log z$ is (0, 1]. Therefore, a single-valued branch of $\log (\log z)$ is $\mathbb{C} \setminus (-\infty, 1]$.

Its derivative is $\frac{1}{z \log z}$, which is undefined at z = 0, 1, which are not in our domain. Furthermore, $\log z$ is analytic and the composition of analytic functions is analytic, so $\log (\log z)$ is analytic.

24/24