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Shear flow of active matter in thin channels
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We study the shear flow of active filaments confined in a thin channel for extensile and contractile fibers.
We apply the Ericksen-Leslie equations of liquid crystal flow with an activity source term. The dimensionless
form of this system includes the Ericksen, activity, and Reynolds numbers, together with the aspect ratio of
the channel, as the main driving parameters. We perform a normal mode stability analysis of the base shear
flow. For both types of fibers, we arrive at a comprehensive description of the stability properties and their
dependence on the parameters of the system. The transition to unstable frequencies in extensile fibers occurs at
a positive threshold value of the activity parameter, whereas for contractile ones a complex behavior is found at
low absolute value of the activity number. The latter might be an indication of the biologically relevant plasticity
and phase transition issues. In contrast with extensile fibers, flows of contractile ones are also found to be highly
sensitive to the Reynolds number. The work on extensile fibers is guided by experiments on active filaments in
confined channels and aims at quantifying their findings in the prechaotic regime.
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I. INTRODUCTION

We study laminar flow of active matter filaments confined
to thin channels. We consider flows generated in both ex-
tensile and contractile fibers with a goal of comparing their
stability behaviors and investigate how confinement affects
both types of response. Our flow model is based on the
Ericksen-Leslie equations of liquid crystals with an activity
source term [1,2] added to represent both types of fibers.
Following up on a previous study of extensile fibers [3], we
analyze the mechanisms of instability of well-aligned shear
flows with a linear velocity profile and quantitatively explore
regimes of instability. We perform a normal mode analysis of
the flow equations and find the instability thresholds of the
uniformly aligned shear flow in terms of the relevant nondi-
mensional parameter groups. Increased activity and Ericksen
number are found to drive both extensile and contractile
systems out of the stable regime, and we find significantly
different stability profiles at low activity or channel width.
We also find that the vorticity and speed of the perturbing
flow increase as the activity number A increases. A numerical
method based on the discretization of the linear system by
Chebyshev polynomials is used in the normal mode stability
analysis, specifically, in solving the underlying spectral prob-
lem. The outcome provides a comprehensive description of
the stability profiles of both types of fibers in confinement,
in terms of the frequency and speed of the perturbations, the
activity, Ericksen, and Reynolds numbers, and the geometry
of the channel.

Extensile fibers are known to form rodlike nematic liquid
crystalline phases, due to their elongated molecular shapes.
Contractile fibers typically consist of disk or planklike molec-
ular groups that fall into the class of discotic nematic liquid
crystals. Both types of fibers are well represented by a com-
mon liquid crystal model, although certain parameters, such
as those relevant to shear flow, fall in different ranges. The
type of extensile fibers that we refer to, characterized by
A > 0, consists of self-propelled elongated units formed by
bundled microtubules that are powered by adenosine triphos-
phate (ATP)-consuming kinesin 29 [4,5]. Actin fibers are
contractile, A < 0, and show a behavior distinct from that of
their extensile counterpart. The sign of the activity parameter
emerges in connection with the terminology of swimmers,
with extensile particles labeled pushers and contractile ones
pullers as illustrated in Fig. 1 [6–9].

We aim at understanding the stability behavior of active
matter in confinement. In particular, our work, at the rest
state limit |A| → 0, provides a quantitative interpretation of
the generic instability concept put forward by Ramaswamy
and Rao [10] for active systems. This property also emerged
in earlier theoretical work on extensile fibers finding that
laterally confined active nematics undergo an instability of a
spontaneous laminar flow when the channel width reaches a
certain threshold value that depends on the strength of the ac-
tivity [11]. These results were later confirmed in experiments
with spindle-shaped cells [12]. In vitro actin fibers have a
length of about 20 μm and diameter of 7 nm, forming bundles
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FIG. 1. Flow profile (gray curves) generated by extensile (left)
and contractile fibers (right). The thick black arrow represents the
nematic director, pointing along the rod axis in rodlike particles, and
perpendicular to the disk in discotic ones.

with diameter of 50 nm. (The bundle size would increase, if
crosslinking occurred [13].)

The Ericksen-Leslie equations of incompressible liquid
crystal flow and their numerical simulations have been used
in many studies of active systems, especially in the turbulent
regimes [14]. The variables of the model include the velocity
field v, the pressure p associated with the incompressibility
constraint, and the unit nematic director n, representing the
local average alignment of the system. The director field takes
different significance for rodlike and discotic liquid crystals.
In the former, it represents the average alignment of the
rodlike constituent molecules, whereas for discotic, planklike
molecular groups, n corresponds to the perpendicular direc-
tion to the planar structures. Since the flows that we study
are plane, we formulate the problem in terms of the stream
function �.

The dimensionless form of the equations involves, in addi-
tion to the aspect ratio � of the channel, three main parameter
groups. Two of them—the Reynolds Re and Ericksen Er

numbers—are defined in the same way as for passive flows.
The activity parameter A quantifies the activity level in the
system. This parameter has a different sign depending on
whether the fibers are extensile or contractile. Although Re

is significantly smaller than other nondimensional parameters
of the system, it influences its stability behavior in some subtle
ways. Er represents the ratio of the viscous to the elastic
torques and may take very large values.

In this work, we focus on the plane shear flow of an active
liquid crystal in the aligning regime. A signature feature of
shear flow is the balance between the stretching and rotational
effects of the flow, measured by λ, the shear aligning param-
eter. Aligning regimes are characterized by the dominance of
the extensional effect over the rotating one and correspond to
|λ| > 1 (for tumbling regimes |λ| < 1), respectively [8,15].

Several works on active liquid crystals found in the
literature use the Beris-Edwards model based on the evo-
lution of the order tensor Q rather than the director of the
Ericksen-Leslie theory [16]. Q represents a symmetric, trace-
less second-order tensor whose two independent eigenvectors
are the director fields of the theory. They reduce to a single
eigenvector n in the uniaxial case, with Q admitting the rep-
resentation Q = s(n ⊗ n − 1

3 I ), where the scalar s ∈ (− 1
2 , 1)

corresponds to the single, independent eigenvalue. For

rodlike liquid crystals, s > 0, whereas for discotic materials,
s ∈ (− 1

2 , 0). A theory of uniaxial liquid crystal flow based on
the fields s and n was proposed by Ericksen [17], in order to
account for defects of degree ±1 and line defects. The theory
resembles that of Beris-Edwards restricted to uniaxial order
tensors (except for some rheological features). We also make
partial use of the order parameter s in order to extract ad-
ditional information about the system (see the Supplemental
Material [18]).

We carry out a normal mode analysis of the shear flow,
with ω representing the wave number of the perturbation and
Im(c), with c representing the complex speed of the pertur-
bation, the corresponding growth rate. A perturbation with
wave number ω and Im(c) > 0 is unstable, and otherwise, sta-
ble. The threshold Im(c) = 0 represents the neutral stability
threshold.

This paper is organized as follows. In the Background
section, we give a brief survey of the classical Ericksen-
Leslie system for passive liquid crystals and their modification
to model active materials [1,2,19,20]. The associated free
energy corresponds to the well-known model by Oseen,
Frank, and Zöcher [21–23]. We illustrate how these equa-
tions are related to the more general models of Landau and
de Gennes [24], coupled with the flow equations by Beris
and Edwards [16,25]. When restricted to uniaxial materials,
the latter give rise to Ericksen’s model for liquid crystals
with variable degree of orientation [17], for which we give
an abridged description. In this section, we also present the
dimensionless version of the equations of flow that serves
to identify the relevant parameter groups of the system: the
Ericksen, activity and Reynolds numbers, and the channel
aspect ratio. The Ericksen number, representing the ratio of
the viscous to the elastic torques, is a key parameter in studies
of passive flow, with large values of that number being as-
sociated with relevant instabilities [15,26,27]. In the Models
section, we develop the equations of plane shear flow, derive
the equation of steady state at the core of the current work,
and obtain the base solution with constant director angle. In
the Methods section, we set up the class of perturbations of
the uniformly aligned shear flow and the framework of its
normal mode analysis. Furthermore, we present the numerical
method to analyze the stability of the base shear flow and
the stability results for contractile fibers and compare them
with our earlier results on the extensile [3]. We also develop
the mathematical tools to study flows with variable director
field, relevant to future studies of higher activity systems.
The Results and Discussion section presents all the findings
of the work. In particular, it describes the properties of the
uniformly aligned stationary state as well as those of the shear
flow with variable director orientations. It proceeds with the
full characterization of the stability behavior of the uniformly
aligned base flow, in terms of the dimensionless parameters of
the system, as obtained from the graphs of the wave number
with respect to the activity parameter. Finally, we draw the
conclusions.

The fully developed equations for the Ericksen-Leslie and
Ericksen models are presented in the Supplemental Mate-
rial [18]. A summary of the plots that resulted from the
numerical simulations is also given there.
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II. BACKGROUND

As for its passive counterpart, an active liquid crystal is
assumed to be a viscous anisotropic and incompressible fluid
with activity sources drawn from internal mechanisms or from
the environment. We now present a survey of the liquid crystal
equations as developed by Ericksen and Leslie [1,2,19,20,28].
Incorporating the mechanisms of activity as developed much
later by Ramaswami et al. [9,10] yields the system known
as active liquid crystals. Let � ⊂ R3 be an open domain
occupied by the liquid crystal with the smooth boundary ∂�.
The Ericksen-Leslie equations of balance of linear and angu-
lar momentum (upon taking the cross product with n, and
neglecting rotational inertia) and the incompressibility and
unit director constraints for the velocity field v, pressure p,
and director field n in � and at time t > 0 are [2]

ρv̇ = ∇ · σ, (1)

γ1ṅ × n = ∇ ·
(

∂WOF

∂∇n

)
× n − ∂WOF

∂n
× n

+ γ1�n × n − γ2An × n, (2)

∇ · v = 0, n · n = 1, (3)

with ρ > 0 denoting the constant mass density. The function
WOF denotes the Oseen-Frank energy of the liquid crystal,
quadratic in the gradients of n:

WOF(n,∇n) = 1
2 {k1|∇ · n|2 + k2|(∇ × n) · n|2

+ k3|(∇ × n) × n|2 + (k2 + k4)∇ ·
× [(v · ∇)n − (∇ · n)n]}. (4)

with k1, k2, k3 > 0, k2 > |k4|, and 2k1 � k2 + k4 denote the
Frank elastic constants. The total energy is

E =
∫

�

[
1

2
ρv̇ · v̇ + WOF(n,∇n)

]
dx.

The Cauchy stress tensor σ is the sum of the elastic, viscous
σ̂ and active σA components, respectively:

σ = −pI − ∇nT ∂WOF

∂∇n
+ σ̂ + σA, (5)

σ̂ = α1(n · An)n ⊗ n + α2N ⊗ n + α3n ⊗ N

+ α4A + α5An ⊗ n + α6n ⊗ An, (6)

σA = −a n ⊗ n, with

A = ∇v + (∇v)T

2
, � = ∇v − (∇v)T

2
, N = ṅ − �n.

(7)

Here the superimposed dot denotes the material time deriva-
tive, that is, ḟ (t, x) = ∂ f

∂t + (v · ∇) f . The Leslie coefficients
αi, 1 � i � 6 represent the anisotropic viscosities of the liq-
uid crystal. In particular, α4 corresponds to the isotropic or
Newtonian viscosity. The parameter a in (7) quantifies the ac-
tivity of the system, with a = 0 corresponding to the standard
Ericksen-Leslie system for passive liquid crystals.

The active part (7) of the stress tensor accounts for the
nonconservative forces generated by the individual fibers and

are assumed to be dipolar. Their expressions were obtained
from the symmetry of the flow field that they generate, with
a > 0 corresponding to the extensile regime, and a < 0 to the
contractile one [6–9] as illustrated in Fig. 1. In the terminol-
ogy of swimmers, extensile particles are known as pushers and
contractile ones as pullers.

The Leslie coefficients and the dissipativeness of the system:
The rate of dissipation function, quadratic on the time-rate
quantities, takes the form

� = 1
2 [α1(nT An)2 + γ1|N|2 + (α5 + α6)|An|2

+ (α3 + α2 + γ2)NT An + α4|A|2]. (8)

The second law of thermodynamics in the form of the
Clausius-Duhem inequality reduces to the positivity of the
rate of dissipation function, � � 0. Necessary and sufficient
conditions for the latter result in the well-known inequali-
ties [2]:

α1 + 3
2α4 + α5 + α6 > 0, 2α4 + α5 + α6 − γ 2

2
γ1

> 0,

α4 > 0, γ1 := α3 − α2 > 0, γ2 := α6 − α5. (9)

Parodi’s relation, a consequence of Onsager’s reciprocal re-
lations in the microscale description of liquid crystals, is an
additional assumption of the theory:

α6 − α5 = α2 + α3. (10)

This condition renders the rate of dissipation function of a
potential for the viscous stress, that is, σ̂ = ∂�

∂∇v
. We consider

a class of liquid crystals able to align under the effect of flow
of small velocity gradient. This requires that∣∣∣∣γ1

γ2

∣∣∣∣ := 1

λ
� 1, (11)

λ known as the flow alignment parameter. It represents the
ratio between the extensional and rotational effects of the
shear flow, with the former dominating in the case λ > 1, and
so the director aligns along the flow direction. The tumbling
regime corresponds to λ < 1, with a prevailing rotational cou-
ple that prevents n from choosing an aligning direction [6,29].
Moreover

γ2 < 0 (for rodlike) and γ2 > 0 (for disklike) (12)

nematics, respectively.
Boundary conditions: The behavior of active liquid crys-

tals on the domain boundary may be significantly different
from that of their passive counterparts. Whereas actin fibers
may anchor and stick to the boundary, some active liquid
crystals, such as microtubules, do not align by anchoring on
the boundary and can only become oriented by flow. There
is no evidence of nonslip behavior in experiments where
microtubules are found to slide along the walls. Guided by
experiments, slip-free boundary conditions were used in nu-
merical simulations in [4]. Hence, we require

v · ν = 0, (σν) · τ = 0, on ∂�, (13)

where ν and τ denote the outer unit normal and tangent vectors
to the boundary, respectively. For the director field, we impose
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zero Neumann boundary conditions:

dn
dν

= 0 on ∂�. (14)

When � is a semi-infinite stripe domain with thickness 2L3,
suppose that the flow and director field are restricted to the
xz-plane, and denote by φ the angle between n and the z-axis.
Then, the conditions (13) and (14), respectively, become

v3(x,−L3) = v3(x, L3) = 0, σ13 = 0, (15)

dφ

dν
= 0. (16)

Remark: In the calculations for the stability analysis of
both types of fibers, we impose Dirichlet boundary conditions
on the perturbation angle rather than the Neumann condi-
tion (16). This has been done to simplify the stability analysis,
but one would naturally expect different results for other
boundary conditions.

A. Scaling and nondimensionalization

Next, we formulate the governing equations in terms of di-
mensionless time and space variables. For this, we choose the
positive quantities L1 and L3 to be the characteristic lengths
along the x and z directions, respectively, and let V > 0 denote
the characteristic velocity. Moreover, we take the isotropic
coefficient α4 to be the characteristic viscosity of the system
and let p0 > 0 represent the typical pressure. The resulting
dimensionless variables are

x̃ = x

L1
, z̃ = z

L3
, ṽ1 = v1

V
, ṽ3 = v3

V
, t̃ = t

T
, T = L1

V
,

p̄ = p

p0
, p0 = V η

L1
, � = L3

L1
: dimensionless width.

The quantity T > 0 represents the typical timescale. We sub-
sequently divide the governing equations, term by term, by the
expression α4

V
L2

1
. The resulting equations involve well-known

dimensionless parameter groups: the Reynolds number Re,
the Ericksen number Er , and the activity parameter A, as well
as the aspect ratio of the channel, �. The quantity Er represents
the ratio of the viscous to the elastic torques. Further, we

multiply the equation of balance of angular momentum by L2
1

k2
1
,

which also brings Er into the expression.
We also need the following nondimensional parameters:

α̃i = αi

ρV L1
, γ̃i = γi

ρV L1
, k̃ = k

ρV 2L2
1

, (17)

where α̃i and γ̃i are the dimensionless viscosity coefficients
and k̃ is the dimensionless elastic modulus. The list of the
dimensionless parameters groups of the model is

Re = L1V ρ

η
: Reynolds number,

Er = ηL1V

k
: Ericksen number,

A = aL1

V η
: Activity number, (18)

where η := α4. In summary, the list of the model parameters
is

PEL := {Re, Er,A, �, αi, γi}. (19)

Likewise, {ṽ, n, p̃} and the Lagrange multiplier λ, maintaining
the unit director constraint, are the unknown fields of the
Ericksen-Leslie model. Since our work deals with the active
liquid crystal confined in a channel, in a later section we
will recast the governing equations in terms of two spatial
dimensions.

B. Ericksen equations

In the theory of liquid crystals with variable degree of
orientation [17], in addition to the director field n that de-
scribes the average direction of a molecular alignment, there
is a scalar field s ∈ (− 1

2 , 1) that describes the quality of the
alignment. The value s = 1 corresponds to perfect alignment,
s = 0 to the isotropic state, with s = − 1

2 representing a state
where the molecules are placed on a plane perpendicular to the
director. For well aligned liquid crystals values of the variable
s are between 0.5 and 0.8.

The role of the variable s can be understood in terms of the
symmetric, traceless order tensor Q, the main variable in the
Landau–de Gennes model ([24], chapter 3).

The uniaxial state of a liquid crystal corresponds to the case
when two of the eigenvalues of Q are equal and different from
the third one, with Q admitting the representation

Q = s
(
n ⊗ n − 1

3 I
)
. (20)

Here n represents the eigenvector associated with the distinct
eigenvalue s, the former being the director of the Oseen-Frank
energy. Equilibrium states of the liquid crystal minimize the
Landau–de Gennes energy [30], whose density is of the form

FdGL = WLdG(Q,∇Q) + w(Q), (21)

where WLdG is a quadratic expression in terms of the third-
order tensor ∇Q and w is a double-well potential that encodes
the phase transition between the nematic and isotropic states.
For special choices of the constants in WLdG and restrict-
ing (21) to the uniaxial class (20), the energy becomes

F = s2WOF(n,∇n) + k0|∇s|2 + νw(s), (22)

with |n| = 1 and s ∈ (− 1
2 , 1), and ν and k0 positive constants.

The scalar potential w(s) is monotonically increasing as s →
1+,− 1

2
−

, expressing that it requires increasingly high energy
to approach the ideal limiting states. Moreover, in the case of
rodlike materials, there exists 0 < s∗ < 1 such that

w′(s∗) = 0, w′′(s∗) � 0. (23)

In standard liquid crystals s∗ depends on the temperature
and/or concentration. For dislike liquid crystals, the min-
imum, still designated by s∗, falls in the negative order
parameter range. Figure 2 shows the scalar potential function
w(s) in the energy (22).

The governing system for the Ericksen model consists of
the suitably modified equations (1)–(3) together with the gen-
eralized balance of angular momentum:

β2(s)ṡ = ∇ ·
(

∂F

∂∇s

)
− ∂F

∂s
− β3(s)n · An. (24)
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FIG. 2. Scalar potential function w(s) corresponding to a rod-
like nematic regime. The analogous potential for a discotic nematic
would have its minimum at a negative value of s.

The modifications on the Ericksen-Leslie model involve the
following:

(1) In the total energy, replace the Oseen-Frank form WOF

in (4) with Ericksen’s energy F in (22).
(2) The Leslie coefficients αi are now functions that

depend on s and still satisfying the inequalities (9) and re-
lations (10) and (11).

(3) The tensorial term β1(s)ṡ n ⊗ n, β1 a scalar function,
is now added to the viscous stress (6). Likewise, the term
k0∇s ⊗ ∂F

∂∇s is included in the total stress (5) as a new elastic
contribution.

(4) The active stress term (7) is now modified to as2n ⊗ n.
(5) The new viscosity coefficients satisfy β1 = β3 <

0 and β2 > 0, and the dimensionless parameter ν̄ = ν
L2

1
k

is added to the list (18).
The collection of parameters of the problem now becomes

P := {Re, Er,A, �, ν̄, αi, γi, βi}.

III. THE MODEL

The proposed model directly emerges from the background
Ericksen-Leslie equations when the shear flow geometry is
assumed. Although such a geometry has received significant
attention, the outcomes of dependence of the director orien-
tation resulting from the combination of an active ingredient
in confinement is less known. We will also explore conditions
under which the basic flow develops a pattern. We suppress
the superimposed bar notation and assume that all the vari-
ables are already dimensionless. We look for solutions such
that the velocity field is unidirectional v = (U (z, t ), 0, 0) and
the director angle φ = φ(z, t ). From Eqs. (A1)–(A3) [18] we
get, the reduced one-dimensional problem

Re
∂U

∂t
= −∂ p

∂x
+ �−2 ∂

∂z

[
g(φ)

∂U

∂z
− A�

2
sin 2φ

]
, (25)

0 = −∂ p

∂z
− 2E−1

r �−3 ∂

∂z

[(
∂φ

∂z

)2]

+ �−2 ∂

∂z

[
g0(φ)

∂U

∂z
− A�cos2 φ

]
, (26)

−γ1�
2

2α4

∂φ

∂t
= ∂2φ

∂z2
+ Er�

4α4

∂U

∂z
(−γ1 + γ2 cos 2φ), (27)

where

g(φ) = 1

4α4
[α1 sin2 2φ + 2(α5 − α2) cos2 φ

+ 2(α6 − α3) sin2 φ + 2α4], (28)

g0(φ) = 1

4α4
[α4 + 2α1 sin 2φ cos2 φ

+ (α2 + α3 + α5 + α6) sin 2φ]. (29)

The function g(φ) is the dimensionless form of the rate of
dissipation � of the flow:

g(φ) = α−1
4 � > 0. (30)

Next, we eliminate the pressure p from the equations of bal-
ance of linear momentum. Taking the partial derivative of
Eq. (26) with respect to x, we get

0 = ∂2 p

∂z∂x
. (31)

Likewise, taking the derivative with respect to z in Eq. (25)
and applying to it the previous result, we get

Re
∂2U

∂z∂t
= �−2 ∂2

∂z2

[
g(φ)

∂U

∂z
− 1

2
A� sin 2φ

]
. (32)

Integrating once with respect to z, we get

Re
∂U

∂t
= �−2 ∂

∂z

[
g(φ)

∂U

∂z
− 1

2
A� sin 2φ

]
+ c1(t ), (33)

where c1(t ) is arbitrary. The governing system reduces now to
Eqs. (27) and (33). Subsequent use of Eq. (26) determines the
pressure.

1. Steady state flow with constant angle of alignment

Let us now look for one-dimensional fields (U (z), 0, 0),
φ = φ(z), and s = s(z). They satisfy the system of equations

0 =g(φ)
dU

dz
− 1

2
A� sin 2φ + c1z + c2, (34)

0 = d

dz

(
s2 dφ

dz

)
+ Er�

4α4

dU

dz
(−γ1 + γ2 cos 2φ), (35)

where c1 and c2 are arbitrary constants obtained in setting
Ut ≡ 0 in Eq. (33) and further integrating it with respect to
z. Let us now determine the constants c1 and c2. We point out
that combining Eq. (25) in the steady-state case with Eq. (34)
yields

c1 = −�2 ∂ p

∂x
.

We shall take c1 = 0, which corresponds to the assumption
that there is no applied external pressure gradient driving the
flow. Furthermore, requiring that the velocity gradient van-
ishes when the activity is equal to zero implies that c2 = 0.
The resulting expression of the velocity gradient is then

U ′(z) = A� sin(2φ)/g(φ), (36)

Substitution of this equation into (35) gives

0 = d

dz

(
s2 dφ

dz

)
+ ErA�2

4α4g(φ)
sin 2φ(−γ1 + γ2 cos 2φ). (37)

034607-5



CALDERER, GOLOVATY, YAO, AND ZHAO PHYSICAL REVIEW E 104, 034607 (2021)

contractile -3
contractile -2
extensile 3
extensile 2

-3 -2 -1 0 1 2 3
-1.0

-0.5

0

0.5

1.0

z

U
(z

)

FIG. 3. Shear flow velocity profiles with shear rate
A� sin(2φ)/g(φ) = ±2 (gray), ±3 (solid black). Lines of
positive rate correspond to the extensile regime and the negative
correspond to contractile.

Next, we look for solutions of Eq. (37) such that φ and
consequently U ′(z) are constant. The latter corresponds to the
observed states with the linear velocity profile. The angle of
orientation of the director is

cos(2φ) = γ1

γ2
. (38)

From the properties of γ1 and γ2 (12) for rodlike nematics, we
observe that cos 2φ < 0 and so

π

4
< φ <

π

2
.

That is, the angle 0 � π
2 − φ � π

4 between the director field
and the horizontal direction is smaller than π

4 radians. Like-
wise, for dislike nematics (12), cos 2φ > 0 so

0 < φ <
π

4
,

and π
2 > π

2 − φ > π
4 . In either case, let us denote

φ0 = 1

2
cos−1

(
γ1

γ2

)
. (39)

The velocity field is given by

U (z) = A�

g(φ)
sin(2φ)z, (40)

where the constant of integration has been chosen to give
the odd profile. We observe that the solutions show very
good agreement with the experimental results. Indeed, in the
shear flow regimes, the activity parameter does not directly
influence the flow alignment, but it does increase the velocity
gradient, i.e., the shear rate. (See Fig. 3).

Note that Eq. (38) shows that the director angle does not
depend on the activity parameter A whose dependence enters
the expression (40) of the velocity gradient. Both properties
are found to be in a full agreement with experiments.

In order to derive alignment features of the constant flow
solution, we need to appeal to the order parameter equation of
Ericksen’s system. In the current geometry, it is represented
by Eqs. (40) and (38) and the solution of the scalar equation,

ν̄w′(s) = − β3

2�
ErA�2 sin2 2φ. (41)

Since β3 < 0 and w′(s) > 0, for s∗ > s > 1, we conclude that
Eq. (41) has a unique stable solution in the given interval, with
its value increasing as either A or Er increase [31]. This points
to the analogous role of the activity A in active flows to that
of the applied pressure gradient in passive Poiseuille flow. As
for the passive flow, the loss of stability of the constant angle
state may prevent the increase in order otherwise predicted by
Eq. (41).

2. Steady-state flow with variable angle of alignment

Nonconstants solutions of Eqs. (37) and (36) represent a
shear flow with variable director angle. In fact, the former
corresponds to a nonlinear pendulum model, with two forcing
terms, the active couple shown in (5) together with the torque
inherent to shear flow, also encountered in passive systems.

IV. METHODS

A. Stability analysis framework

Henceforth, we study the stability of the solution
(U (z), φ0) under perturbations of the form

ṽ1 = U + εv1(t, x, z),

ṽ3 = εv3(t, x, z),

φ̃ = φ0 + εφ1(t, x, z),

where U in (40) and φ0 in (39) are the shear base flow solution
and s0 and φ0 are constant. Substituting these expressions into
the full two-dimensional system of governing Eqs. (A1), (A2)
and (A3) [18] we obtain the linear system (B1), (B2), and (B3)
for the fields (v1(t, x, z), v3(t, x, z), φ1(t, x, z)).

Moreover, we propose the following exponential expres-
sions of the unknown fields, consistent with those used in the
normal mode stability analysis:

�(t, x, z) = ψ (z)eiω(x−ct ), (42)

v1(t, x, z) = ∂�

∂z
= eiω(x−ct ) dψ

dz
, (43)

v3(t, x, z) = −∂�

∂x
= −iωψ (z)eiω(x−ct ), (44)

where � denotes the stream function of the flow. Also, for the
direction angle, we assume that

φ1(t, x, z) = �(z)eiω(x−ct ). (45)

Here ω and c are dimensionless complex numbers corre-
sponding to the wave number and to the speed or growth of
the perturbation, respectively. Specifically, separating � and
� into their real and imaginary parts, it follows that Re(ω)
represents the spatial oscillatory part of the perturbation and
Im(c) corresponds to its time growth rate. From now on, we
will restrict ourselves to the case when

Im(ω) = 0.

Substituting the expressions (42)–(45) into the linear gov-
erning Eqs. (B1), (B2) and (B3) [18], we obtain a linear
system (C3) and (C4) [18] for the new variables. Specifically
the former is a fourth-order linear ordinary differential equa-
tion for ψ and the latter is a second-order equation for �.
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A relevant quantity in the analysis of flow which also helps
quantify the transition to turbulence is the vorticity vector:
W = ∇ × v. Since we are dealing with two-dimensional flow,
it reduces to a scalar,

W (x, z) = ∂v1

∂z
− ∂v3

∂x
= eiω(x−ct )

[
d2ψ

dz2
− ω2ψ (z)

]
. (46)

The governing equations for the perturbations are given by
(C3) and (C4) in the Supplemental Materials [18], where their
derivation is carried out.

We choose boundary conditions so that the boundary val-
ues of the base flow are not altered. The zero boundary
conditions on perturbations suggest that a discretization us-
ing Chebyshev polynomials is appropriate. We apply the
Chebyshev-QZ algorithm to solve the generalized eigenvalue
problem resulting from the linearization of the governing sys-
tem about the base shear flow. We emphasize the secondary
role of the director field boundary conditions. Indeed, one im-
portant difference between active and passive liquid crystals
is that whereas the latter can be aligned by surface anchoring,
this is not the case for active flows, known to respond to
alignment by flow only. Hence the requirement that the per-
turbations do not change the boundary values of the velocity
and alignment of the basic solutions leads to imposing the
conditions

ψ (±1) = 0, ψ ′(±1) = 0, �(±1) = 0. (47)

The numerical method

The Chebyshev polynomials [32,33] in the variable z form
an orthogonal family on z-interval [−1, 1]. We apply the
Chebyshev-QZ algorithm [34,35] to solve the generalized
eigenvalue problem (47), (C3), and (C4).

We first approximate the stream function ψ (z) and angle
function �(z) by the truncated Chebyshev expansions

ψ (z) =
N∑

n=0

anTn(z), �(z) =
N−2∑
n=0

bnTn(z), (48)

where Tn(z) denotes the nth-order Chebyshev polynomial of
the first-kind. Our goal is to determine the coefficients an, bn

and the eigenvalue c. To keep the unknown coefficients evenly
distributed over the two functions, we choose different orders
of truncations for ψ (z) and �(z).

We collocate the Galerkin truncation at the extrema of the
Chebyshev polynomial

z = cos
( jπ

N − 2

)
, j = 1, . . . , N − 3. (49)

Thus, evaluating the governing equations at these extrema
points, we obtain 2N − 6 linear algebraic equations. Six ad-
ditional relations are provided by the corresponding boundary
conditions (47), which complete the system.

The substitution of the truncated expansions (48) into the
boundary conditions yields rows of zeros, which produce a
spurious eigenvalue [34], and therefore, we eliminate them.
The full system of equations becomes the algebraic eigenvalue
problem

[AR + iAI ]x = c[BR + iBI ]x, (50)

where x = (a3, . . . , aN , b2, . . . , bN−2)T ∈ C2N−5, AR, AI , BR,
and BI denote (2N − 5) × (2N − 5) real matrices. Using the
QZ algorithm of MATLAB, we obtain the eigenvalues and
corresponding eigenvectors. Details of the steps leading to the
system (50) are given by Eqs. (E1), (E2), and (E4) in the
Supplemental Material [18]. We end this section by listing
the values of the Leslie viscosity coefficients used in the
simulations. For extensile liquid crystals, we take

α1 = 0, α2 = −1.5, α3 = −0.5, α4 = 2,

α5 = 2, α6 = 0, γ1 = 1, γ2 = −2. (51)

The data list to be used in the simulations of contractile liquid
crystals is

α1 = 0, α2 = −1.5, α3 = −0.5, α4 = 4,

α5 = −2, α6 = 0, γ1 = 1, γ2 = 2. (52)

These provide simple values that still maintain the anisotropy
of the viscosity, satisfy the positivity of the rate of dissipation
function, and represent the aligning regime in each class.
Moreover, we take the constant order parameter as s0 = 1.0.

The numerical study yields plots of ω with respect to the
A, for different values of Er , �, and Re, showing regions
of the wave-number domain for which the corresponding
perturbation is either stable or unstable, that is, whether it
decays or grows in time. The study also yields plots of the
streamlines, vorticity, and director angle of the perturbation
fields. The tangent vector field of the former corresponds to
the velocity field of the system. We focus on quantitatively
understanding the role of the parameter values in determin-
ing the instability behavior. Specifically, we assume that the
Leslie coefficients αi are fixed and seek how the dimensionless
parameters Er,A, �2, and Re affect the stability of the shear
flow.

Our analysis follows along the lines of many previous
investigations of the physical mechanisms that cause either
instability or stability in terms of eigenmodes of the linearized
system [36–38]. To characterize the stability of the shear flow
steady state, we check the growth rate of the dominant un-
stable eigenmode of the perturbation that affects the system.
For unstable systems, the largest value of the linear growth
rate and the corresponding wave number excite the system and
modify the basic state in some essential fashion. On the other
hand, stable perturbation modes also modify the system but
decay in time.

B. Flow with variable director angle

The approach to study such flows is based on classical
results of the theory of nonlinear, boundary value problems for
second-order ordinary differential equations. Specifically, the
methods that we apply rely on the comparison of solutions of
the governing equations with appropriately simplified forms
and the Sturm-Liouville theory of oscillatory solutions of the
latter. First, let us rewrite the equation as

φ′′(z) = m

g(φ)
sin 2φ

(
cos 2φ − γ1

γ2

)
, m := −ErA�2γ2

4α4
.

(53)
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2 , for extensile (dashed line) and contractile fibers, respectively. The
unstable rest states for each type of fiber correspond to φ = π

2 ,− π

2 .
The stable stationary flows, with uniform director, correspond to φ =
π

3 , π

6 , for the extensile and compressible systems, respectively.

Note that m > 0 for both contractile and extensile fibers, since
in both cases Aγ2 < 0.

Theorem 1. Suppose that the viscosity coefficients satisfy
the inequalities (9), (11), and (57), and satisfy | γ1

γ2
| < 1. Then

the rest states φ = π
2 and φ = −π

2 , corresponding to horizon-
tal alignment of the director field for extensile and contractile
fibers, respectively, are unstable. Moreover, the uniformly
aligned stationary states corresponding to Eqs. (39) and (40)
are center equilibrium solutions. Furthermore, there exists
m0 > 0 such that bounded solutions of Eq. (53) exist and
oscillate with a wave number

√
m0 such that

M− � m0 � M+,

with M± as in (59).
First, note that the conclusions on the instability of the

equilibrium solutions φ = ±π
2 as well as on the stability of

the uniformly aligned stationary states follow from standard
phase plane analysis, which uses the auxiliary potential (55),
shown in Fig. 4, as well as a calculation involving the specific
form of g−1(φ) in (53). The main part of the proof involves
three steps.

1. Step 1

We first consider the following auxiliary equation:

φ′′(z) − M sin 2φ

(
− γ1

γ2
+ cos 2φ

)
= 0, (54)

with M > 0 constant. It can also be written as φ′′(z) +
M γ2

γ1
sin 2φ − M

2 sin 4φ = 0, which is the pendulum equation
subject to two forces with different wave numbers. Multiply-
ing Eq. (54) through by φ′ and integrating it with respect to z
once, we obtain the energy integral

1

2
φ′2 + V (φ) = E , V (φ) = M

2

(
− γ1

γ2
+ cos 2φ

)2

, (55)

where E � 0 is an arbitrary constant. An example of the
potential energy in (55) is shown in Fig. 4 [39,40].

A phase plane analysis of Eq. (54) shows the existence of
periodic solutions with wave number of the order

√
M.

2. Step 2

Starting with the relation � = 4α4g(φ), which positivity
is guaranteed by Leslie’s inequalities (9), we express it as a
quadratic polynomial of cos 2φ,

� = −α1 cos2 2φ + (α5 + α3 − 2α6) cos 2φ

+ (α5 − α3 + 2α4 + α1). (56)

Let us place additional assumptions on αi, specifically,

m− := α5 − α3 + 2α4 − |α2 + α6| > 0. (57)

It can be easily verified that

m+ := (α5 − α3 + 2α4 + α1) � � � m−. (58)

Note that the coefficients in (51) and (52) satisfy the previous
inequalities. This leads us to consider two differential equa-
tions of the type (54) with

M = M+ := m

m+ , M = M− := m

m− , (59)

respectively.

3. Step 3

To show existence of periodic solutions of the original
Eq. (53), we first consider two auxiliary equations of the
form (54), with M = M pm, as in (59), respectively. Applying
the Sturm comparison theorem for second order ordinary dif-
ferential equations [41] to each of the latter equations together
with (53) allows us to conclude the existence of periodic
solutions of Eq. (53).

V. RESULTS AND DISCUSSION

A. Stability analysis: Contractile fibers and comparison
with the extensile

We study the plane shear flow of active liquid crystals in
the aligning regime. We now present and discuss the results
obtained by analyzing the governing equations and numer-
ically solving the algebraic systems (50) corresponding to
contractile systems A < 0 to determine the normal instability
threshold for different parameter values. We summarize the
main results of the analysis and the ensuing graphs as follows.

We find solutions with linear velocity profiles and constant
angles of alignment that agree with experimental observations
of active filaments in a channel when A > 0 [4]. We also find
a velocity gradient of equal magnitude but opposite sign for
the flow of contractile fibers. For both types of fibers, we find
that the magnitude of the velocity gradient is proportional
to the activity parameter, and the angle of alignment solely
depends on the ratio of two relevant anisotropic viscosity
coefficients, as in the case of a passive shear flow.

A prediction that emerges from the analysis of the order
parameter is the increase in order as the activity number
increases. In the case A > 0, should the aligned shear flow
remain stable, it would become highly ordered at a sufficiently
large activity number. Likewise, for contractile fibers, increas-
ing |A| tends to place the plank molecular groups on planes
perpendicular to n. Such conclusions follow from Eq. (41),
together with the profile of the potential shown in Fig. 2 and
the property of its critical points (23).
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FIG. 5. Regions of stability in the |A|ω-plane. Plots (a)–(c) correspond to Re = 0.1 and � = 0.2 but different Ericksen numbers; plots
(d)–(f) correspond to Er = 1000 and Re = 5, but different channel ratios �; plot (g) is for small Ericksen number Er = 100, � = 0.2, and
Re = 1; plot (h) is for medium Er = 500, � = 0.2, and Re = 5; and plot (i) is for Er = 250, � = 0.4, and Re = 5.

The increase of the interval of unstable wave numbers as
|A| increases is an ongoing feature found in all the graphs in
the |A|ω plane, as in Figs. 5, 6(d), 6(e), and 7(a).

In all graphs, the range of accessible wave numbers is
determined by two relevant length scales: the typical width
of a fiber bundle (about 50 μm) and the length Lx of the
experimental apparatus (giving the smallest accessible di-
mensionless wavelength of 1). We also recover the essential
instability [9], that is, the fact that there is always a stable
(flow) region near A = 0 (due to the rest state becoming
unstable). The |A|-width of the latter shows dependency on
Er and l , as can be seen from Figs. 5(a)–5(c) and 5(d)–5(f),
respectively, with the stable region narrowing as Er and l
increase. We also note that, for Er = 1000, such a region is
nearly thinned out for wave numbers in the range 10–20, as
the instability features of passive flow with large Er emerge.
We also note that, for all parameters of the flow, there is
always a small wave length range where the flow is always
stable. A recurrent property of the system is the increase of
the area of the unstable region in the |A|ω-plane as, each,
� and Er increase, while the other parameters remain fixed.
Figures 5(a)–5(c) show the effect of increasing Er from 10 to
1000 on the area of the regions. The analogous effect with
increasing � shown in Figs. 5(d)–5(f) is weaker.

Another relevant finding is the rich structure of the
diagrams near their low left corner, that is, at the low

wave-number regime with |A| small. This effect becomes
accentuated with the increase of the Re number. Although
no specific experimental connection can be established at this
point, we point out that such effects are ubiquitous in actin-
type fibers subject to low-intensity stimulus, either active
or passive [42,43]. It may be due to a plastic-type material
rearrangement at the molecular scale, with the tendency to
stretching of the filament due to shear being opposed by
the natural contractile one, an effect also observed in some
non-Newtonian fluids [44]. For instance, this type of behav-
ior is also exhibited by the actin network in red blood cells
and serves as a mechanism to support shear in small capil-
lary domains [43]. However, in our case, we have not found
sufficient experimental evidence to support such tentative
conclusions.

The Reynolds number also significantly affects the instabil-
ity patterns, especially for values above Re = 1. One feature
is the presence of a low wave-number stability region across
|A| [Figs. 5(d)–5(h), 7(a), and 6(e)]. However, the nucleation
of an unstable region near the origin is also found, for Re = 5,
Er = 1000, and � = 0.4 [Fig. 5(f)] and for Re = 5, Er = 500,
and � = 0.2. For even higher Re-number, features emerge that
are reminiscent of those found in the analysis of the Orr-
Sommerfeld equation for shear flow of isotropic, Newtonian
fluids [Fig. 6(e), for Re = 100, with the remarkable whale
head profile at Er = 500].
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Figures 6(a) and 6(b) show the detailed maximum growth
rates max(Im(c)). They are corresponding to the horizontal
and vertical sliding through the stability region shown in
Fig. 5(g). Both graphs show a complex behavior at low fre-
quencies [Fig. 6(a)] and for small values of |A| [Fig. 6(b)].
For ω = 100, the growth rate increases linearly with respect
to |A|.

Figure 6(c) shows the relative error of the numerical
approximations with respect to degree of the Chebyshev poly-
nomial used in the simulation. Figure 6(f) plots the stability
region in the �ω-plane, as the active number A = −10 is
fixed.

The comparisons between the contractile fibers and the
extensile fibers are shown in Fig. 7. Simulations for those
figures are with different ranges of A, but the same Re = 1,
Er = 1000, and � = 0.2. The other parameters are in (51)
and (52) for corresponding type fibers.

Figure 7(a) shows the stability region of the contractile
fibers, and Fig. 7(b) shows the maximum growth rates in
time as active number A is fixed. Each curve describes the
detailed max(Im(c)) as we slide through the stability re-
gion 7(a) vertically. When we slide through the stability region
horizontally, that will give a curve in Fig. 7(c). There are com-
plicated growth rates when ω ∈ (0, 500). Figure 7(d) shows
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FIG. 7. The region of stability in the Aω-plane and growth rates with either activity number A fixed or perturbation wave number ω fixed.
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FIG. 8. Streamlines and the vorticity field for the perturbation modes with the largest eigenvalue. (a) Er = 1000, Re = 5, � = 0.2, ω = 75,
and A = −200. (b) Er = 1000, Re = 5, � = 0.2, ω = 75, and A = −10.

the stability region of extensile fibers studied in our previous
paper [3]. This is a direct comparison with the corresponding
contractile fibers in Fig. 7(a). Figures 7(e) and 7(f) are de-
tailed max(Im(c)) as we slide through the region in Fig. 7(d)
horizontally and vertically. So far, the trend shows that the
contractile stabilizes at lower frequencies than the extensile
fiber case. Unstable growth rates change with more compli-
cated behavior than those for extensile fibers. For example,
with A = −100, the system starts with a stable region. As ω

increases, it enters an unstable region, then becomes stable
for a narrow range of ω, reentering a large unstable region,
to finally becoming stable for large ω. Even in the second
unstable region, the maximum growth rate is not monotone
increasing or decreasing. For the extensile fiber, when A =
100 is fixed, the system also starts in a stable region (with
monotonic growth rate), then enters the single unstable region,
moving out of it near ω = 65. Figures 8 and 9 illustrate modes
of the fields that perturb the basic shear flow. Specifically, they
include the profiles of the vorticity, streamlines, and director
angle. One observation is the increase of the vorticity range as
A increases, whether the perturbation is unstable [Figs. 8(a)
and 9(a)] or stable [Figs. 8(b) and 9(b)]. In particular, we point
out that the maximum vorticity in Fig. 8(b) (with A = −10)

is 600 dimensionless units, whereas the remaining figures (all
of them with A = −200) show the maximum range of 104

(according to the color coding). However, the parameters �,
Re, and Er do not play the same role in changing the vorticity
range of the perturbing flow. For instance, Fig. 8(a) (corre-
sponding to Er = 1000) and Fig. 9(b) (Er = 100) show the
same vorticity range of 104 dimensionless units. In both cases,
A = −200.

Figures 8(a) (A = −200) and 8(b) (A = −10) also indi-
cate an increase of the range of values of the stream function
with respect A. Since the plots have a common geometrical
domain, we can infer an increase of the magnitude of the
velocity field itself. In Fig. 8(a) we estimate a distance of 0.25
dimensionless units along the z-direction between the center
and the boundary of a vortex, with a change of 1.5 dimension-
less units of the stream function. This gives ∂Re(ψ )

∂z ≈ 1.25
0.25 = 6

as a velocity estimate. Likewise, we get 0.1
0.25 = 0.4 for the

perturbing velocity field in Fig. 8(b).

B. Flow with variable director angle

One outcome of the analysis outlined in the Methods
section is that the rest states φ = π

2 and φ = −π
2 ,

corresponding to horizontal alignment of the director field for
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FIG. 9. Streamlines and the vorticity field for the perturbation modes with the largest eigenvalue. (a) ω = 75, Re = 0.1, � = 0.2, Er =
1000, and A = −200 and (b) ω = 75, Re = 5, � = 0.2, Er = 100, and A = −200.

extensile and contractile fibers, respectively, are unstable. We
note that the perturbations are a subclass of the more general
ones discussed in the previous subsection and have the same
geometry as the solutions (φ = φ(z),U = U (z)). However,
in both cases, the results confirm the essential instability
of the rest state, a signature of active matter. The analysis
also predicts the emergence of oscillatory states with wave
number

√
m0, where m0 > 0 satisfies M− � m0 � M+, with

M± as in (57) and (59). In addition to the quantities A, Er ,
the isotropic and rotational viscosities α4 and γ2, respectively,
the rate of dissipation � plays a main role in determining the
wave number of the oscillatory solutions. We note that the
wave number m0 increases with Er and A. In the estimate
of the wave number, we used the inequalities (57) which are
more restrictive than those in (9) but are satisfied by aligning
liquid crystals such as MBBA and 5CB [15], and also by
the viscosity data in used in the stability calculations of the
current work. The predicted oscillations are are consistent
with experimental observations of undulating pattern of
confined extensile fibers at low activity [14].

VI. CONCLUSION

This article examines the onset of instability of a uniformly
aligned shear flow of active matter in a confined channel,

for both extensile and contractile fibers. The stability plots in
the Aω-plane for extensile fibers indicate positive threshold
value of A at which the system becomes unstable. This critical
value decreases with increasing values of Er and �, and with
the range of unstable frequencies also increasing. The growth
rate profile calculated with respect to A shows a parabolic
shape for low frequencies becoming linear at a threshold
wave number. The profile of Im(c) with respect to ω starts
being positive for all values of A, reaching zero growth at a
threshold value of ω that appears to be independent of A. With
further increase of ω, Im(c) reaches a positive maximum,
subsequently tending to zero as ω increases, a feature that is
also independent of A. These trends have been reported in the
experimental literature [4].

The stability plots in the Aω-plane for contractile fibers
follow a pattern analogous to the extensile ones in that the
range of unstable frequencies increases with |A|, Er , and �.
However, there is no threshold value of |A| at which the
unstable frequencies set in. Rather, the stability pattern for
small |A|, which is associated to small wave number values, is
very complex, showing to be highly sensitive to the Reynolds
number, which also affects other regions of the ω − A dia-
gram. This is a feature not shown by the extensile fibers. The
plot of the growth rate Im(c) with respect to ω starts being
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nonconvex at small ω and becomes decreasing. When plotted
as a function of |A|, it tends to a approach a wave-number-
dependent constant value, showing an increasing profile for
higher frequencies.

In future works, we will investigate the behavior of con-
tractile fibers in the low-activity regime and its connection
to plasticity, a signature of actin systems in the cell and the
cytoplasm environment, being responsible for many physio-
logical functions. For both types of fibers, the results point
to a transition towards turbulent regimes as the width of
the channel or the level of activity increase. The follow up
work on extensile fibers will examine the observed pairwise,
(± 1

2 ) defect elimination that accompanies the transition to
turbulence. To the authors’ knowledge, experiments for active
contractile fibers, at low-activity regimes and analogous to

those involving extensile ones, are much scarcer. This may
be due to the low-activity instability and plasticity behav-
iors of the contractile systems. From this point of view, the
work presented here provides quantitative information on such
regimes and may help bridge the gap between both such
systems.

ACKNOWLEDGMENTS

M.C.C. gratefully acknowledges the support of the Na-
tional Science Foundation through Grants No. DMS-1435372
and No. DMS-DMREF1729589. D.G. acknowledges funding
from the National Science Foundation through Grant No.
DMS-1729538. L.Y. acknowledges the support of the Na-
tional Science Foundation Grant No. DMS 1852597.

[1] F. M. Leslie, Some thermal effects in cholesteric liquid crystals,
Proc. R. Soc. London A 307, 359 (1968).

[2] F. M. Leslie, Continuum theory for nematic liquid crystals,
Continuum Mech. Thermodyn. 4, 167 (1992).

[3] L. Zhao, L. Yao, D. Golovaty, J. Ignés-Mullol, F. Sagués, and
M. C. Calderer, Stability analysis of flow of active extensile
fibers in confined domains, Chaos 30, 113105 (2020).

[4] J. Hardoüin, R. Hughes, A. Doostmohammadi, J. Laurent,
T. Lopez-Leon, J. M. Yeomans, and J. Ignés-Mullol, and F.
Sagués, Reconfigurable flows and defect landscape of confined
active nematics, Commun. Phys. 2, 121 (2019)..

[5] T. Sanchez, D. Chen, S. DeCamp, M. Heymann, and Z. Dogic,
Spontaneous motion in hierarchically assembled active matter,
Nature (London) 491, 431 (2012).

[6] S. A. Edwards and J. M. Yeomans, Spontaneous flow states in
active nematics: A unified picture, Europhys. Lett. 85, 18008
(2009).

[7] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. Simha, Hydrodynamics of soft active
matter, Rev. Mod. Phys. 85, 1143 (2013).

[8] D. Marenduzzo, E. Orlandini, and J. M. Yeomans, Hydrody-
namics and Rheology of Active Liquid Crystals: A Numerical
Investigation, Phys. Rev. Lett. 98, 118102 (2007).

[9] S. Ramaswamy, The mechanics and statistics of active matter,
Annu. Rev. Condens. Matter Phys. 1, 323 (2010).

[10] S. Ramaswamy and M. Rao, Active-filament hydrodynamics:
Instabilities, boundary conditions and rheology, New J. Phys.
9, 423 (2007).

[11] R. Voituriez, J. F. Joanny, and J. Prost, Spontaneous flow tran-
sition in active polar gels, Europhys. Lett. 70, 404 (2005).

[12] G. Duclos, C. Blanch-Mercader, V. Yashunsky, G. Salbreux, J.-
F. Joanny, J. Prost, and P. Silberzan, Spontaneous shear flow in
confined cellular nematics, Nat. Phys. 14, 728 (2018).

[13] M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P.
Matsudaira, and D. A. Weitz, Elastic behavior of cross-linked
and bundled actin networks, Science 304, 1301 (2004).

[14] P. Guillamat, J. Ignés-Mullol, and F. Sagués, Taming active
turbulence with patterned soft interfaces, Nat. Commun. 8, 564
(2017).

[15] R. G. Larson, The Structure and Rheology of Complex Fluids,
Topics in Chemical Engineering Vol. 150 (Oxford University
Press, New York, 1999).

[16] B. J. Edwards, A. N. Beris, and M. Grmela, Generalized con-
stitutive equation for polymeric liquid crystals Part 1. Model
formulation using the Hamiltonian (Poisson bracket) formula-
tion, J. Non-Newtonian Fluid Mech. 35, 51 (1990).

[17] J. Ericksen, Liquid crystals with variable degree of orientation,
Arch. Ration. Mech. Anal. 113, 97 (1991).

[18] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.104.034607 for the explicit expressions of
the governing equations (A), the shear flow equations (B) and
the set up of the stability analysis (C).

[19] J. L. Ericksen, Inequalities in liquid crystal theory, Phys. Fluids
9, 1205 (1966).

[20] J. Ericksen, Nilpotent energies in liquid crystal theory, Arch.
Ration. Mech. Anal. 10, 189 (1962).

[21] F. C. Frank, I. Liquid crystals. On the theory of liquid crystals,
Discuss. Faraday Soc. 25, 19 (1958).

[22] C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc.
29, 883 (1933).

[23] H. Zocher, Über die optische Anisotropie selektiv absorbieren-
der Stoffe und über mechanische Erzeugung von Anisotropie,
Naturwissenschaften 13, 1015 (1925).

[24] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals,
International Series of Monographs in Physics Vol. 83 (Oxford
University Press, New York, 1993).

[25] A. N. Beris and B. J. Edwards, Thermodynamics of Flow-
ing Systems: With Internal Microstructure, Oxford Engineering
Science no. 36 (Oxford University Press on Demand, Oxford,
1994).

[26] M. C. Calderer and B. Mukherjee, Chevron patterns in liquid
crystal flows, Phys. D: Nonlinear Phenomena 98, 201 (1996)

[27] K. F. Wissbur, Rheology of rod-like polymers in the liquid
crystals, J. Rheol. 25, 619 (1981).

[28] J. Ericksen, Continuum theory of nematic liquid crystals, Res.
Mechanica 21, 381 (1987).

[29] D. Baalss and S. Hess, The viscosity coefficients of oriented
nematic and nematic discotic liquid crystals, Z. Naturforsch. A
43, 662 (1988).

[30] B. Davies, Integral Transforms and Their Applications, Mathe-
matical Sciences, Vol. 25 (Springer-Verlag, Berlin, Heildelberg,
New York, 1978).

[31] M. C. Calderer and B. Mukherjee, Some mathe-
matical issues in the modeling of flow phenomena

034607-13

https://doi.org/10.1098/rspa.1968.0195
https://doi.org/10.1007/BF01130288
https://doi.org/10.1063/5.0023924
https://doi.org/10.1038/s42005-019-0221-x
https://doi.org/10.1038/nature11591
https://doi.org/10.1209/0295-5075/85/18008
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/PhysRevLett.98.118102
https://doi.org/10.1146/annurev-conmatphys-070909-104101
https://doi.org/10.1088/1367-2630/9/11/423
https://doi.org/10.1209/epl/i2004-10501-2
https://doi.org/10.1038/s41567-018-0099-7
https://doi.org/10.1126/science.1095087
https://doi.org/10.1038/s41467-017-00617-1
https://doi.org/10.1016/0377-0257(90)85072-7
https://doi.org/10.1007/BF00380413
http://link.aps.org/supplemental/10.1103/PhysRevE.104.034607
https://doi.org/10.1063/1.1761821
https://doi.org/10.1007/BF00281186
https://doi.org/10.1039/df9582500019
https://doi.org/10.1039/tf9332900883
https://doi.org/10.1007/BF01559272
https://doi.org/10.1016/0167-2789(96)00051-6
https://doi.org/10.1122/1.549634
https://doi.org/10.1515/zna-1988-0709


CALDERER, GOLOVATY, YAO, AND ZHAO PHYSICAL REVIEW E 104, 034607 (2021)

of polymeric liquid crystals, J. Rheol. 42, 1519
(1998).

[32] K. C. Toh and L. N. Trefethen, The Chebyshev polynomials of
a matrix, SIAM J. Matrix Anal. Appl. 20, 400 (1998).

[33] L. N. Trefethen, Spectral Methods in MATLAB (SIAM, New
York, 2001).

[34] J. J. Dongarra, B. Straughan, and D. W. Walker, Chebyshev tau-
QZ algorithm methods for calculating spectra of hydrodynamic
stability problems, Appl. Num. Math. 22, 399 (1996).

[35] D. Bourne, Hydrodynamic stability, the Chebyshev tau method
and spurious eigenvalues, Continuum Mech. Thermodyn. 15,
571 (2003).

[36] A. E. Fraser, P. W. Terry, E. G. Zweibel, and M. J. Pueschel,
Coupling of damped and growing modes in unstable shear flow,
Phys. Plasmas 24, 6 (2017).

[37] G. I. Taylor, VIII. stability of a viscous liquid contained be-
tween two rotating cylinders, Philos. Trans. R. Soc. London A
223, 289 (1923).

[38] P. G. Drazin and W. Reid, Hydrodynamic Stability (Cambridge
University Press, Cambridge, UK 2004).

[39] J. A. Müller, R. S. Stein, and H. H. Winter, Director dynamics
of uniformly aligned nematic liquid crystals in transient shear
flow, Rheol. Acta 33, 473 (1994).

[40] T. Tsuji and A. D. Rey, Orientation mode selection mechanisms
for sheared nematic liquid crystalline materials, Phys. Rev. E
57, 5609 (1998).

[41] E. A Coddington and N. Levinson, Theory of Ordinary Differen-
tial Equations (Tata McGraw-Hill Education, New York, 1955).

[42] M. C. Calderer, C. Garavito, and C. Luo, Liquid crystal elas-
tomers and phase transitions in actin rod networks, SIAM J.
Appl. Math. 74, 649 (2014).

[43] P. Dalhaimer, D. Discher, and T. C. Lubensky, Crosslinked actin
networks show liquid crystal elastomer behaviour, including
soft-mode elasticity, Nat. Phys. 3, 354 (2007).

[44] R. Shangraw, W. Grim, and A. M. Mattocks, An equation for
non-Newtonian flow, Trans. Soc. Rheol. 5, 247 (1961).

034607-14

https://doi.org/10.1122/1.550931
https://doi.org/10.1137/S0895479896303739
https://doi.org/10.1016/S0168-9274(96)00049-9
https://doi.org/10.1007/s00161-003-0134-4
https://doi.org/10.1063/1.4985322
https://doi.org/10.1098/rsta.1923.0008
https://doi.org/10.1007/BF00366333
https://doi.org/10.1103/PhysRevE.57.5609
https://doi.org/10.1137/130914309
https://doi.org/10.1038/nphys567
https://doi.org/10.1122/1.548898

