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Three-dimensional soliton-like distortions in flexoelectric nematic liquid crystals: 
modelling and linear analysis
Ashley Earlsa and M. Carme Caldererb

aBasque Center for Applied Mathematics (BCAM), Basic Center for Applied Mathematics, Bilbao, Spain; bSchool of Mathematics, University of 
Minnesota, Minneapolis, MN, USA

ABSTRACT
This article models experimentally observed three-dimensional particle-like waves that develop in 
nematic liquid crystals, with negative dielectric and conductive anisotropy, when subject to an 
applied alternating electric field. The liquid crystal is confined in a thin region between two plates, 
perpendicular to the applied field. The horizontal, uniformly aligned director field is at equilibrium 
due to the negative anisotropy of the media. However, such a state is unstable to perturbations 
that manifest themselves as confined, bullet-like, director distortions travelling up and down the 
sample at a speed of several hundred microns per second. It is experimentally predicted that 
flexoelectricity plays a key role in generating the soliton-like behaviour. We develop a variational 
model that accounts for ansiostropic dielectric, conductive, flexolectric, elastic and viscous forces. 
We perform a stability analysis of the uniformly aligned equilibrium state to determine the 
threshold wave numbers, size, phase-shift and speed of the soliton-like disturbance. We show 
that the model predictions are in very good agreement with the experimentally measured values. 
The work models and analyzes a three-dimensional soliton-like instability reported, for the first 
time in flexoelectric liquid crystals, pointing towards a potential application as a new type of 
nanotransport device.
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1. Introduction

In this paper, we study a new type of three- 
dimensional soliton-like director field distortion 
observed in a flexoelectric nematic liquid crystals 
with negative dielectric anisotropy, subject to an 
(AC) alternating electric field [1]. The travelling dis-
turbances, referred to as director bullets, tuxedos and 
soliton-like structures, consist of concentrated three- 
dimensional pattern of chevron-like distortion of 
molecular alignment of the liquid crystal propagating 
through a uniformly oriented sample. They arise as 
perturbations of the director field from the uniform 
state. Within the bullet region, the bow-like director 
perturbation oscillates with the frequency of the 
applied AC electric field and breaks the fore-aft sym-
metry, resulting in rapid propagation perpendicularly 
to the initial direction of alignment. They do not 
spread while moving over macroscopic distances 
a thousand times longer than their size. In this 
article, we build a mathematical model of the phe-
nomenon that accounts for the intertwined effects of 
negative dielectric and electric charge conducting 
anisotropy together with the flexoelectric, bending 

and viscous, contributions, all finely tuned, as collec-
tively respond to the applied AC-field. We analyse 
the instability threshold of the undisturbed, uni-
formly alignd base solution and show that it char-
acterises the size and speed of the emerging soliton- 
like disturbance. The governing system couples the 
Ericksen-Leslie equations of the dynamics of the 
director field n, including dielectric and flexoeletric 
effects, but neglecting defects and flow, coupled with 
the Poisson-Nearst-Planck system of electric charge 
motion.

This paper models the experiments reported in [1], 
where a sample of 4 prime-butyl-4-heptyl-bicyclohexyl 
-4-carbonitrile (CCN-47) with impurities is confined 
between two parallel plates, located at z ¼ 0 and 
z ¼ d, respectively, of a Cartesian coordinate system 
ðx; y; zÞ of the Eucledian space. The plates form a cell 
of thickness d ¼ 3 � 30 (Figure 1, left picture). Initially, 
the director is uniformly aligned parallel to the plates, 
n0 ¼ x̂, and an alternating electric field is then applied 
across the cell in the perpendicular direction to the 
plates, E0 ¼ E0 cos ωt ẑ. Note that n0 is an equilibrium 
state of the system due to the negative dielectric aniso-
tropy of the media, with the property that molecules 
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tend to align on a plane perpendicular to the applied 
electric field. The amplitude of the applied voltage is 
within the range U ¼ 10 � 90. Although a wide range of 
frequencies is being used in the experiment, 
ω ¼ 20 � 5000Hz, only the smaller interval between 
400 and 460Hz is reported to generate soliton-like dis-
turbance. Once generated, they travel up and down the 
region on the direction, taken to be the y-coordinate 
axis, perpendicular to both n0 and E0. The bullets exhi-
bit all the hallmarks of soliton behaviour: (1) they move 
with constant speed, (2) do not decay or disperse, and 
(3) retain their shape after pairwise collisions. 
Moreover, the disturbances form only in the middle 
plane of the cell, z ¼ d=2, away from the bounding 
plates, and therefore are truly three-dimensional. 
Neither defects nor net flow are observed in the sample. 
To describe their shape, let us consider a single chevron 
and take the x-axis to be along its centre. The orthonor-
mal set of unit vectors ðn; p;mÞ play a main role in 
setting the geometry of the soliton-like package: 

n ¼ cos θ cos ϕ; cos θ sin ϕ; sin θð Þ;

m ¼ sin ϕ; � cos ϕð Þ; p ¼ n�m (1) 

with n representing the parametrisation of the director 
field in terms of the angles θ, out-of-plane, and ϕ, the in- 
(x,y) plane angle giving the disturbance a chevron form.

We develop a variational model that accounts for 
dielectric, conductive, flexolectric, elastic and anisotro-
pic viscous forces. It consists of a nonlinear parabolic 
system of partial differential equations for the dynamics 
of the director field n and the Poisson-Nernst-Planck 
system for the diffusion and transport of electric charge, 
with cþ and c� representing the concentrations of posi-
tive and negative ions, respectively. These equations are 

coupled with Poisson’s equation for the electrostatic 
potential Φ. The equations of the director dynamics 
follow from the Ericksen-Leslie equations of liquid crys-
tal flow setting the velocity field equal to zero, according 
to the experimental observation of no net flow taking 
place. The dimensional analysis of the governing equa-
tions reveals four time scales, that listed in increasing 
order include: the time scale of the dielectric effects Td, 
the flexoelectric time scale Tf that is comparable in 
magnitude to that of the applied AC field Tω and finally 
that of the elastic effects, Te. Furthermore, the time scale 
Td is associated with the initial layer behaviour of the 
dielectric terms, acting at the beginning of every AC- 
cycle, approximately during the first 0.01 dimensionless 
time units. This allows us to obtain an approximate 
governing system, past the initial time, that excludes 
the appropriate dielectric terms. We also show that 
solutions of the governing system have the experimen-
tally observed symmetry properties, and with every bul-
let travelling down along the y-axis, there is a symmetric 
one moving on the opposite direction. The predictions 
of the π

2 phase-shift of the out-of-plane angel θ is accu-
rate within 10� 2 error.

Our work focuses on characterising the instability 
threshold of the uniform solution, n0, and explore the 
corresponding conditions to determine the size range, 
phase and speed of the subsequent disturbance. For this, 
we linearise the governing system about the basic state 
n0 and take the double space Fourier transform of the 
resulting equations. The latter consists of a coupled 
system of three ordinary differential equations, with 
respect to the time variable t, for the angles ϕ and θ 
and the net charge q (the equation for the total charge, 
Q, decouples from the rest). The equations contain the 

Figure 1. Top left: Geometry and initial alignment of the director field
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parameters of the problem together with the (justified as 
purely imaginary) wave numbers, ρx and ρ�, of the 
perturbation, horizontal and vertical, respectively, (The 
vertical wave number refers to the travelling wave vari-
able, � :¼ y � Rt, R being the dimensionless speed of the 
perturbation). We perform two main types of simplifi-
cation on the system, first, we average it with respect to 
the cross-sectional variable z, with an ansatz motivated 
by a polynomial expansion of the unknown fields with 
respect to z, that captures the boundary conditions on 
top and bottom plates. The second simplifying assump-
tion consists on a time averaging of the system with 
respect to the small parameter L2

i , where Li is 
a dimensionless constant measuring a relative strength 
of the flexoelectric effects (of the order Oð10� 3Þ). 
Finally, the application of the variation of constants 
formula allows us to obtain the solution of the (approxi-
mated) governing system. We show that the uniform 
solution is an unstable node of the system, which 
together with the expressions of the general solutions 
allow us to formulate the conditions on the eigenvalues 
of the system that lead to (the approximate) neutral 
stability of the equilibrium state. These turn out to be, 
in part, conditions on the trace of two matrices, very 
much along the lines of the Floquet theory, leading to 
satisfactory bounds on the size of the disturbance. 
Specifically, the bound on the horizontal size, that of 
twice the distance between the two plates, is accurate, 
the vertical length of the disturbance as predicted by the 
model falls on the lower range of the experimentally 
measured soliton-like lengths, that is, between 2:5� d 
and 6:25� d μm, where d ¼ 8μ. The model underesti-
mates the speed of the observed disturbance, by about 
a factor of 1

2 , also with respect to the lower bound values 
of experimental measurements. The linearity of the 
model may be responsible for the underpredictions. 
Our analysis also shows that, instabilities do not occur 
without flexoelectric polarisation in the model, and 
neither occur in the absence of ions [2]. Moreover, we 
find that the presence of ionic impurities as well as the 
increase of the absolute value of the anisotropic con-
ductivity, each contributes to increasing the speed of the 
bullets. The shape of the chevron bullet is described in 
Figure 1. [34]. Middle sketch: schematic of the tuxedo 
structure and snapshot of tuxedo moving left in relation 
to the page [34] (top right). The direction field shows 
the angle ϕ and the colour is the measured light inten-
sity. The units are 1 along each axis. The planar angle ϕ 
is largest at location 3, and θ is zero in the chevron 
except at locations 1 and 2 [1]. Bottom left: tuxedos 
travelling up and down in relation to the page [34]. 
This is a top-down view of the middle plane between 

the two plates, at z ¼ 0. Bottom right: A schematic 
illustrating the angle θ when the period of the external 
electric field is 2. The nails indicate the director n, with 
the heads closer to the reader than the ends. The vector 
v indicates the velocity of the chevron [1].

The pattern formation by application of an electric 
field to a liquid crystal has a long experimental and 
modelling history [3,4]. These patterns can be widely 
classified into two types, director distortions associated 
with the Freedericks transition [5,6] and electroconvec-
tive, along the vein of well-known phenomena, such as 
the Taylor-Bénard convection [7–9]. They are rooted in 
two key properties, the dielectric and conductive aniso-
tropies, εa and σa, respectively, in addition to the geo-
metry, either planar or homeotropic, of the undistorted 
director alignment n0. We recall that in materials with 
εa > 0, the liquid crystal tends to align with the electric 
field, whereas the alignment is transverse in the negative 
case. Likewise, ionic impurities will move along the 
direction of the field for liquid crystals with σa > 0, and 
transversely otherwise.

Since the pioneering works by Williams [10] and 
Kaspustin and Larinova [11], there have been extensive 
experimental and theoretical investigations of the elec-
tro-hydrodynamic convection in nematic liquid 
crystals. In William’s experiment, the nematic, charac-
terised by εa < 0 and σa > 0, is enclosed between two 
parallel plates, with separation d between 10 and 100 
μ, in a geometry identical to the one in this work, with 
director alignment n0 ¼ x̂ (Figure 1, top left). Applying 
a low-frequency AC field, with a threshold maximum 
voltage of 10 V, convection rolls appear with associated 
director distortions, easily detected optically. These are 
rolls along the y-direction parallelly stacked next to each 
other, at a distance d, along the x-axis. Carr [12], pro-
vided the theoretical bases of the Williams domains, 
starting with the observation that the motion of ions 
along the electric field direction causes n to tilt towards 
the z axis. Elastic forces resist the tilting, leading to 
a periodic equilibrium configuration with spatial con-
centrations of charge, especially in regions where the 
director gradient is large. Finally, the localised charge 
coupled with the electric field induces a circular flow 
reminiscent of Rayleigh-Bérnard convection, with the 
same periodicity as the director field. This pattern per-
sists even when the electric field changes sign, and as 
shown in [13], the critical voltage at which the Williams 
domains occur is independent of the sample thickness d. 
The first theoretical study of the Carr effect, in one- 
dimensional geometry, was carried out by Helfrich 
[14] followed by two-dimensional analyses of the phe-
nomenon [15]. The full three-dimensional analysis as 
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well as the pattern formation for large frequencies 
(dielectric regime) and more general geometries was 
carried out by Kramer and Pesch [16]. Experiments 
and analysis of several liquid crystals revealed the three 
main features that characterise electroconvection: geo-
metry (either planar or homeotropic alignment) and the 
signs of εa and σa. Liquid crystals such that εaσa < 0 and, 
for both initial director field orientations, present pri-
mary convective pattern. However those such that εa < 0 
and σa < 0, with planar initial director orientation, fall 
into the class known as presenting non-standard Carr- 
Helfrich mechanism, with rarely observed convection 
phenomenon; they are still the subject of active investi-
gation [17–19]. This is the case of the material in our 
study, and for which electroconvective phenomena has 
not been observed.

A related effect that does not involve ionic impurities 
comes from the often neglected flexoelectric polarisa-
tion, that is, the development of electric dipoles asso-
ciated with director field gradients [20]. Each rod- 
shaped molecule of the nematic carries a small dipole 
moment, and in a nearly uniformly aligned sample, 
these dipoles nearly cancel and therefore have little 
effect. However, when the sample is subject to splay or 
bend type distortions, the small charges present on each 
molecule accumulate, leading to a spatial separation of 
charge. Flexoelectricity is also known to generate rich 
equilibrium spatial pattern [21]. Whereas Williams 
domains are entirely explained by ionic charge, soliton- 
packages cannot occur without flexoelectric polarisa-
tion, as observed in [1].

Soliton-like waves are ubiquitous to many physi-
cal systems and have been extensively studied [22]. 
Mathematically, solitons refer to solutions of dis-
tinctive partial differential equations associated 
with a Hamiltonian system, that in spite of being 
of dispersive type, present the three wave-particle 
features previously described. Although solitons are 
regarded as stable solutions of the PDE due to the 
long-time persistence of the shape, the question of 
their stability, specially for PDEs with critical non-
linearity, remains one of the most challenging open 
problems of mathematical physics [23]. Equations 
of this class include the KdV equation, the wave 
equation, and the linear and nonlinear Schrödinger 
equations. Optical solitons in liquid crystals, nema-
ticons, forming in nonliner optic regimes prevalent, 
for instance, in applications to fibre optics, are 
associated with solutions of the latter [24,25]. The 
type of phenomena studied in this article falls into 
the class of particle-like waves known as physical 
solitons. The goal of the experimental work is to 
design new mechanisms of particle nanotrasport. 

The article is organised as follows. In section 2, we 
derive the governing equations, obtain the relevant 
non-dimensional parameter groups and time-scales, 
in particular, leading to the identification of the 
initial layer term. In section 3, we linearise the 
PDE system about the initial uniform state and 
apply Fourier analysis and asymptotic analysis to 
obtain a sufficient condition for instability. 
Concluding remarks are given in section 5. This 
work is part of the Ph.D. thesis dissertation by 
Ashley Earls [26].

2. A model

The goal of this section is to derive the set of 
governing equations appropriate to describe the 
soliton-like phenomenon that we aim at investigat-
ing. We assume that the liquid crystal occupies 
a domain Ω � R 3 that will later take to be the 
parallelepiped region confined between the two 
electrodes. The proposed model involves the main 
physical ingredients of the phenomenon: dielectric 
and flexoelectric polarisation, elastic, viscous and 
ionic effects, and the role of the alternating electric 
field. It also takes into account two main simplify-
ing assumptions, one of them being the absence of 
an explicit role of defects in the evolution of the 
chevron structures, which are interpreted as travel-
ling distortions of the molecular alignment that do 
not generate net flow. This allows us to describe 
the state of alignment of the liquid crystal by the 
unit director field n, and follow a modelling 
approach based on the Ericksen-Leslie equations, 
suppressing flow but including electrodynamic 
effects and flexoelectric polarisation. Furthermore, 
rather than stating the laws of balance of linear and 
angular momentum of the system, we follow the 
variational approach associated with the principle 
of minimum dissipation. For this, we proceed to 
writing the total energy and the rate of dissipation 
function of the system, for the set of generalised 
variables q and generalised velocities _q. In addition 
to the director n, q includes the family of charge 
concentration variables ck, 1 � k � N, correspond-
ing to N ionic species with valence zk, and the 
electrostatic potential Φ. The generalised velocities 
consist of _n, _Φ and uk, 1 � k � N, the latter denot-
ing the ionic velocity of the k th species. Let c0 > 0 
denote a typical value of the concentration of one 
of the ionic families in the problem. The value of c0 
specified in the table is that given in [1]. 
Approaches to precise measurements of such 
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a quantity in liquid crystal cells have been recently 
reported in the literature [27]. The ion concentra-
tions satisfy the continuity equations 

@ck

@t
þ Ñ � ðckukÞ ¼ 0; 1 � k � N: (2) 

The anisotropy of the liquid crystal is encoded in its 
dielectric tensor 

εðnÞ ¼ ε0ðε?I þ εan� nÞ; εa :¼ εk � ε?; (3) 

where ε0 is the vacuum dielectric constant and εa 
denotes the dielectric anisotropy, the difference between 
the material-dependent parallel and perpendicular ani-
sotropy coefficients. Flexoelectric materials are charac-
terised by the electric displacement vector field 

Delec ¼ εðnÞEþ Pflex; (4) 

where Pflex denotes the polarisation field of the material, 
that is, the dipolar density due to splay and bend distor-
tions of the director field [4], 

Pflex ¼ e1ðÑ � nÞnþ e3ðÑ� nÞ � n
¼ e1ðÑ � nÞnþ e3ðÑnÞn: (5) 

The coefficients e1 and e3 in (5) can be positive or nega-
tive, and the second equality in (5) follows from the 
identity v � ðÑ� vÞ ¼ � ðÑvÞv for jvj ¼ 1. The total 
energy density of the system consists of the contributions 

E ¼ EOF þ Edielc þ Eion þ Eflex ¼: ~E þ Eflex; (6) 

EOF denoting the Oseen-Frank energy of director dis-
tortion, the dielectric electrostatic energy Edielc, the ionic 
contribution Eion which involves the entropy as well as 
the electrostatic energy of free charged particles, and the 
electrostatic contribution of the flexoelectric polarisa-
tion Eflex. These are of the form 

EOF ¼
1
2

K1ðÑ � nÞ2 þ
1
2

K2½n � ðÑ� nÞ�2 þ
1
2

K3jn� ðÑ� nÞj2

þ
1
2
ðK2 � K4Þ tr2ðÑnÞ � trðÑn2Þ

� �
;

Edielc ¼ �
1
2

ε0 jEj2 þ εaðn � EÞ2
� �

; Eion ¼ eΦ
XN

k¼1
zkck

þ KBT
XN

k¼1
ck ln

ck

c0

� �

; Eflex ¼ � Pflex � E;

(7) 

where the positive constants T and e denote the absolute 
temperature and the elementary charge, respectively, and 
KB the Boltzman constant. The Frank elasticity constants 
Ki satisfy, K1 > 0;
K2 > 0; K3 > 0; K2 � jK4j; 2K1 � K2 þ K4:

We briefly recall that the dynamics of a non-dissipative 
system, in a domain Ω � R 3, described by the generalised 
coordinates qi and the generalised velocities _qi, is given by 
the equations 

Xe
i :¼

d
dt
@L

@ _qi
�
@L

@qi
¼ 0; L ¼ T ð _qiÞ � UðqÞ: (8) 

Here L denotes the Lagrangian of the system, that is, the 
difference of the density of kinetic energy T ð _qi), the 
density of potential energy UðqiÞ, and Xe

i represents 
the elastic force [28]. The variational statement of 

this equation is δ
δ _qi

ð

P

_E dx ¼ 0; where E ¼ L þ 2U is 

the total energy of the system and P � Ω. That is, 
the system behaves in such a way that the rate of 
work is minimised with respect to the generalised 
velocities. Letting R ¼ Rðqi; _qiÞ represent the 
Rayleigh dissipation function, the dissipative forces 
are given by Xd

i ¼ � @R=@ _qi. The dynamics of 
a dissipative system is then formulated as the bal-
ance of the conservative forces by the dissipative 
ones, that is, the statement 

d
dt
@L

@ _qi
�
@L

@qi
þ
@R

@ _qi
¼ 0: (9) 

As in the conservative case, the above equations 
also have a variational interpretation in that they 
are critical points of the Rayleigian functional with 
respect to _q: 

δ
δ _qi

ð

P

ð _E þR � χn � _nÞdx ¼ 0; (10) 

with the variations performed while holding q and 
the elastic forces Xe

i constant. The last term in the 
previous equation corresponds to imposing the unit 
director constraint jnj ¼ 1, with χ denoting the 
Lagrange multiplier. The two sources of energy dis-
sipation of the system are the rotational viscosity of 
the director field and the diffusion of the ionic 
particles, 

R ¼
1
2

γ1j _nj
2
þ

KBT
2

XN

k¼1
ckuk � D� 1uk; (11) 

where uk denotes the velocity of the k th ionic species 
(with respect to the nematic fluid, at zero velocity) and 
D the diffusion matrix, taken to be the same for all ion 
types. The principle of minimum dissipation (10) yields 
the relations 

0 ¼
δ

δ _n

ð

Ω

_~E þ R � χn � _n
� �
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¼

ð

Ω

@

@n
ðEOF þ EflexÞ � Ñ �

@

@Ñn
ðEOF þ EflexÞ

� ��

� χnþ γ1 _n � ε0εaðn � EÞE�; (12) 

0 ¼
δ

δ _Φ

ð

Ω

_~E þR � χn � _n
� �

¼

ð

Ω
� Ñ � ε0 ε?Iþ εan� nð ÞE½ � þ e

Xc

k¼1
Nkzk � Ñ � Pflex

" #

;

(13) 

0 ¼
δ

δuk

ð

Ω

_~E þ R � χn � _n
� �

¼

ð

Ω
ck Ñμk þ KBTD� 1uk� �

: (14) 

These equations are complemented by the natural 
boundary conditions. The term μk in (14) denotes the 
chemical potential associated with ion species k, 
given by 

μk ¼
@Eion

@ck ¼ eΦzj þ KBT ln
ck

c0

� �

þ 1
� �

; 1 � k � N:

(15) 

Therefore (14) yields uk ¼ � 1
KBTDÑμk ¼ � D Ñck

ck �
�

ezk

KBT EÞ: Substituting the latter into (2) and assuming 
that (12) and (13) hold for every subpart P � Ω, we 
arrive at the governing system of partial differential 
equations and the constraint relations: 

@EOF
@n � div @EOF

@Ñn

� �
� χnþ γ1 _n � ε0εaðn � EÞE

þðe3 � e1Þ½ðÑ � nÞE � ÑnTE� þ ðe1 þ e3ÞðÑEÞn ¼ 0;

Ñ � ε0ε?Eþ ε0εaðn � EÞnþ e1ðÑ � nÞnþ e3ðÑnÞn½ � ¼ e
PN

k¼1
zkck;

@ck

@t þ Ñ � D ezkck

KBT E � Ñck
� �h i

¼ 0;
n � n ¼ 1; E ¼ � ÑΦ; Φ denotes the electrostatic potential:

8
>>>>>>><

>>>>>>>:

(16) 

2.1. The governing equations of the chevron 
system

The experimental domain is the liquid crystal region Ω 
enclosed between two parallel plates 

Ω ¼ ðx; y; zÞ 2 R 3 : �
L
2
< x<

L
2
; 0< y< L; 0< x3 < d

� �

:

¼ Ω? � ð0; dÞ:
(17) 

To describe the chevrons reported in [1], we make the 
following assumptions:

(1) The simplifying, one-constant approximation of 
the Oseen-Frank energy, with K1 ¼ K2 ¼ K3 ¼

K and K4 ¼ 0.

(2) There are two ion species present in the sample 
(N ¼ 2), with concentrations c� and 
valences z� ¼ �1.

(3) The dielectric anisotropy is negative: εa < 0.
(4) The diffusion matrix for the ions is given by 

D ¼ �D Iþ ðλσ � 1Þn� n½ �; �D ¼
KBT

e2
σ?
c0
: (18) 

(5) The conductive anisotropies satisfy σk < σ?, 
so λσ :¼ σk=σ? < 1.

Using the Euler representations (1) of the unit vec-
tors fn;m; pg, the governing equations (16) become 

γ1ϕt ¼ K Δϕ � 2 tan θ Ñϕ �Ñθð Þ þ ε0jεajðn � EÞðm � EÞ sec θþ ðe1 þ e3ÞðÑEÞn �m
þðe1 � e3Þ ðÑθ � pÞðE �mÞ � ðÑθ �mÞðE � pÞ½ � sec θ;

γ1θt ¼ K Δθþ 1
2 sin 2θ jÑϕj2

� �
þ ε0jεajðn � EÞðp � EÞ þ ðe1 þ e3ÞðÑEÞn � p

þðe1 � e3Þ cos θ ðÑϕ �mÞðE � pÞ � ðÑϕ � pÞðE �mÞ½ �;

Ñ � ε0ε?E � ε0jεajðn � EÞnþ e1ðÑ � nÞnþ e3ðÑnÞn½ � ¼ eðcþ � c� Þ; E¼ � ÑΦ
c�t ¼ �DÑ � ðIþ ðλσ � 1Þn� nÞ Ñc� � c�e

KBT E
� �h i

:

8
>>>>>>><

>>>>>>>:

(19) 

The unknown fields of the system are ϕ, θ, Φ, cþ, and 
c� , with domain in Ω and with t > 0. These equations 
form a coupled nonlinear parabolic-elliptic system with 
an electric field source term.

2.2. Scaling analysis and nondimensionalization

We define the dimensionless variables 

�x ¼
x
L
; �y ¼

y
L
; �z ¼

z
d
; η ¼

d
L
; �t ¼

t
T
;

�Φ ¼
Φ

E0d
; �c� ¼

c�

c0
;

(20) 

where T > 0 denotes a time scale to be chosen later 
and η> 0 is the aspect ratio of the domain. Upon scaling, 
the domain Ω and its cross-section Ω? in (17) become �Ω 
and �Ω?, respectively. The scalar E0 > 0 denotes the max-
imum intensity of the applied AC field, with the product 
E0d representing the value of the electric potential 
applied to the system. Likewise, c0 > 0 denotes the typi-
cal concentration of a representative ionic species in the 
cell. 

Parameter Label Value (SI)

Plate size L 5
Plate separation d 3 � 19:5
Frank elastic constant K e � 11
Rotational viscosity γ1 6e � 2
Temperature T 313
Electric field intensity E0 8:2e6
Electric field frequency ω 400 � 450
Dielectric permittivity vacuum ε0 8:85e � 12
Dielectric anisotropy εa � 4:2
Dieletric permittivity ? ε? 8:8
Anisotropic conductivity k σk 4:9e � 9
Anisotropic conductivity ? σ? 6:1e � 9
Flexoelectric coefficients e1, e3 on the order of e � 11
Typical charge concentration c0 2e20

LIQUID CRYSTALS 747



The dimensionless version of the system (19) is 

Bϕt ¼ C �Δϕ � 2 tan θ �Ñϕ � �Ñθ
� �

þ ðn � �EÞðm � �EÞ sec θ
þ L2 sec θ m � ð�Ñ�EÞn

� �

þ L1 ð�Ñθ � pÞð�E �mÞ � ð�Ñθ �mÞð�E � pÞ
� �

sec θ;
(21) 

Bθt ¼ C �Δθ þ 1
2 sin 2θ j�Ñϕj2

� �
þ ðn � �EÞð�E � pÞ

þ L2 p � ð�Ñ�EÞn
� �

þ L1 cos θ ð�Ñϕ �mÞð�E � pÞ � ð�Ñϕ � pÞð�E �mÞ
� �

;

(22) 

�Ñ � J�E � ðn � �EÞnþ ðL1 þ L2Þð�Ñ � nÞnþ ðL1 � L2Þð�ÑnÞn
� �

¼ Mðcþ � c� Þ;
�E ¼ � �ÑΦ

(23) 

Fc�t ¼ �Ñ � ðIþ ðλσ � 1Þn� nÞ G�Ñc� � c��E
� �� �

: (24) 

In (21)-(24), the rescaled differential operators are 
given by 

�Ñ ¼ η
@

@�x
; η

@

@�y
;
@

@�z

� �

; �Δ ¼ η2 @2

@�x2 þ
@2

@�y2

� �

þ
@2

@�z2 :

(25) 

Table ?? summarises the parameters of the problem and 
their experimental values in [1].

The dimensionless coefficients are 

B ¼ γ1T� 1

ε0jεa jE2
0
; C ¼ K

d2ε0jεa jE2
0
; L1 ¼

e1 � e3
ε0jεa jE0d ; L2 ¼

e1þe3
ε0jεajE0d ;

J ¼ ε?
jεaj
; M ¼ ec0d

ε0jεa jE0
; F ¼ KBΘdT� 1

eE0 �D ¼ ec0d
E0σ? ; G ¼ KBΘ

eE0d :

(26) 

Observe that J > 1 is always satisfied, guaranteeing the 
ellipticity of equation (23) with respect to �Φ. Taking 
d ¼ 8μm, postponing the choice of T, and using the 
remaining values in table 2.2, we have 

B ¼ ð2:4� 10� 5sÞT� 1; C ¼ 6:25� 10� 5; J ¼ 2:1; M ¼ :84;
F ¼ ð5:1� 10� 3sÞT� 1; G ¼ 4:1� 10� 4; λσ ¼ 0:8; η ¼ 1:6� 10� 3:

(27) 

The flexoelectric constants e1 and e3 are difficult to 
measure experimentally, but they are on the order of 
10� 11C m� 1 [29,30]. Therefore, the flexoelectric coeffi-
cients obey jL1j; jL2j � Lf , where 

Lf :¼
10� 11C m� 1

ε0εaE0d
¼ 4:1� 10� 3: (28) 

Prior to choosing the value of T in the dimensionless 
parameter groups (27), we determine the time scales 
associated with the different effects of the model.

(1) Letting ω be the frequency of the applied electric 
field, the corresponding time constant Tω ¼

2π
ω 

falls within the range 

0:50π � 10� 2s � Tω � 0:44π � 10� 2s: (29) 

(2) The scale of dielectric effects follows from the 
relation B ¼ 1 and gives Tdielc ¼ 0:21� 10� 4s.

(3) The scale of the flexoelectric effect follows from 
equating B ¼ Lf , giving Tflex ¼ 0:59� 10� 2s.

(4) The scale of the elastic effect follows from setting 
B ¼ C and gives Telast ¼ 0:38 s.

The previous calculations indicate that, within the 
middle- to high-frequency range, the applied electric 
field activates the flexoelectric affects with a time 
scale of its own order of magnitude. This motivates 
us to choosing 

T ¼ 2πω� 1: (30) 

We also find that the dielectric effects relax faster, 
whereas the elastic ones evolve within a greater time 
scale. Typical values of the dimensionless constants, that 
will be taken as reference in the analysis, are calculated 
with ω as in (29): 

B ¼ 1:2� 10� 2; C ¼ 6:3� 10� 5; J ¼ 2:1; M ¼ 0:84;
F ¼ 2:6; G ¼ 4:1� 10� 4; jL1j; jL2j � 4:1� 10� 3; λσ ¼ 0:8:

(31) 

The scaled equations also reveal the dielectric effect 
as dominant and, with the flexoelectric one being 
between 102 and 103 times smaller. Moreover, for 
a sufficiently large electric field strength E0, jL1j and 
jL2j become very small, suppressing the flexoelectric 
mechanism. At such a limit, the appearance of 
convection would be expected. Next, we investigate 
the speed s of the soliton-like structure. In [1], the 
authors report speeds in the range of 150 to 400 μ 
m/sec. With the length of the electrode plate taken 
as 5:5 mm, the range of time scales Ts of the 
soliton motion is 

Ts
min ¼

5:5
0:4
¼ 14s � Ts � Ts

max ¼
5:5
0:1
¼ 55s: (32) 

The dimensionless form of the soliton speed is taken as 

R ¼
s

Lω
¼

ηs
ωd

: (33) 

Within the observed speed interval and the frequency 
range of the applied electric field, we find that 

Rmin ¼
100

5� 103 � 450
¼ 0:444� 10� 4 � R � Rmax

¼
450

5� 103 � 400
¼ 2:25� 10� 4:

(34) 
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It remains to specify the initial and boundary conditions 
of the problem (21)-(24). These are 

θðx; y; z; 0Þ ¼ θ0ð�x;�y;�zÞ; ϕðx; y; z; 0Þ ¼ ϕ0ð�x;�y;�zÞ;
�c�ðx; y; z; 0Þ ¼ �c�0 ð�x;�y;�zÞ:

(35) 

At �x ¼ �1
2, �y ¼ 0; 1, and �z ¼ 0; 1, 

θ ¼ ϕ ¼ 0; �cþ � �c� ¼ 0; �cþ þ �c� ¼ Q0
for all �t � 0: (36) 

Additionally, 

�Φð�x; �y; 1;�tÞ ¼ �Φ0ð�tÞ; �Φ�x; �y; 0;�tÞ ¼ 0;
�x;�y 2 �Ω?

(37) 

�Φn �x;�y;�z;�tð Þ ¼ 0; �x;�y 2 @ �Ω?; 0<�z< 1; (38) 

where ν denotes the unit outer normal to the boundary 
@ �Ω? (where corners are being excluded). The constant 
Q0 denotes a background charge concentration (both 
signs) representing the amount of impurities in the 
system. Assuming that there are two ion species in the 
sample, we take Q0 ¼ 2. Dirichlet boundary conditions 
on n express the strong anchoring imposed on the 
bounding plates. Likewise, prescribing the electric 
potential on the plates is compatible with the waveform 
generator used in the experiment. For the charges, the 
assumption of Dirichlet boundary conditions instead of 
the standard no-flux is done for analysis convenience. 
Note that the initial profile of �Φ can be computed from 
Poisson’s equation and the conditions (35)–(38).

2.3. Travelling wave geometry, symmetry and time 
multiscale

We study travelling wave solutions that move along the 
y-axis with positive dimensionless speed R> 0 as in (33). 
We therefore define the similarity variable 

�� ¼ �y � R�t; (39) 

However, for our current analysis, we treat R as one of 
the unknowns of the problem.

From this point forward, we suppress the superim-
posed bar notation on variables and look for solutions 
that depend on the variables t, x, z, and �. The partial 
derivatives transform as 

@

@y
¼
@�

@y
@

@�
¼
@

@�
;

d
dt
¼
@

@t
þ
@�

@t
@

@�
¼
@

@t
� R

@

@�
;

(40) 

and the corresponding gradient and Laplacian opera-
tors are 

Ñ� ¼ η
@

@x
; η

@

@�
;
@

@z

� �

; Δ� ¼ η2 @2

@x2 þ
@2

@�2

� �

þ
@2

@z2 :

(41) 

The governing system (21)–(24) becomes 

Bϕt ¼ BRϕ� þ C Δ�ϕ � 2 tan θ Ñ�ϕ � Ñ�θ
� �

þ ðn � EÞðE �mÞ sec θ þ L2½m � ðÑ�EÞn� sec θ
� L1ðÑ�θ �mÞðE � pÞ sec θþ L1ðÑ�θ � pÞðE �mÞ sec θ;

Bθt ¼ BRθ� þ C Δ�θ þ 1
2 sin 2θ jÑ�ϕj2

� �
þ ðn � EÞðE � pÞ þ L2½p � ðÑ�EÞn�

� L1ðÑ�ϕ � pÞðE �mÞ cos θ þ L1 cos θðÑ�ϕ �mÞðE � pÞ;
Ñ� � JE � ðn � EÞnþ 1

2ðL1 þ L2ÞðÑ� � nÞnþ 1
2ðL2 � L1ÞðÑ�nÞn

� �
¼ Mq;

FQt ¼ FRQ� þ Ñ� � Iþ ðλσ � 1Þn� nð Þ GÑ�Q � qE
� �� �

;

Fqt ¼ FRq� þ Ñ� � Iþ ðλσ � 1Þn� nð Þ GÑ�q � QE
� �� �

;

8
>>>>>>>><

>>>>>>>>:

(42) 

where the dimensionless variables 

Q :¼ cþ þ c� ; q :¼ cþ � c� (43) 

denote the total unsigned background charge and the 
net charge, respectively. The unknown dimensionless 
fields of the problem are ϕ, θ, Φ, Q, and q.

We point out that choosing R> 0 implies the selec-
tion of a disturbance moving in the positive y-direction. 
However, the experiments show that there are also 
chevrons moving in the opposite direction. Indeed, 
a simple calculation shows that, if there exists 
a chevron moving along the positive y-direction, there 
is a symmetric one moving opposite to it. We formulate 
this feature as follows:

2.3.1. Symmetry property of the solutions
Suppose ðϕ; θ;Φ; qÞ is a solution to (42) with speed R. 
Then 

ϕ�ðx; �; tÞ ¼ � ϕðx; � �; tÞ; θ�ðx; �; tÞ ¼ θðx; � �; tÞ;
Φ�ðx; �; tÞ ¼ Φðx; � �; tÞ;

q�ðx; �; tÞ ¼ qðx; � �; tÞ; Q�ðx; �; tÞ ¼ Qðx; � �; tÞ:

8
<

:
(44) 

is a solution to (42) with speed � R. This property 
establishes that, for every soliton-like package moving 
with speed R along the positive direction, there is 
another one, with the opposite bullet profile (Figure 1, 
top-right illustration) that moves with the same speed 
along the negative direction.

2.3.2. Initial layer property
We conclude this section observing that the governing 
system (42) has two main time scales, relevant to the 
dynamics of the angular profile ϕ and θ. These are the 
standard dimensionless time t and the fast time t̂ :¼ t

B , 
with B as in (27). This motivates us to consider solutions 
of the system such that θ ¼ θðt; t̂; x; �; zÞ and 
ϕ ¼ ϕðt; t̂; x; �; zÞ. Furthermore, the size of the coeffi-
cients of the system, together with standard asymptotic 
arguments associated to initial layer analysis, allow us to 
approximate the angular equations of the governing 
system in the t̂ scale as 
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ϕt̂ ¼ ðn � EÞðE �mÞ sec θ; θt̂ ¼ ðn � EÞðE � pÞ;

t̂ :¼
t
B
:

(45) 

In particular, this indicates that, the initial conditions on 
the shape of the distortion that triggers the chevron are 
only felt at the very early time stages of the process, near 
t ¼ 0, (lasting about 10� 2, in dimensionless time). 
However, due to the periodicity of the source potential, 
the effect also reappears at t ¼ nπ, n � 0, integer, where 
jpðnπÞj ¼ j cosðnπÞj ¼ 1. This indicates that the dielec-
tric effects, which depend only on the size of the applied 
field, are present in the system, discretely in time, man-
ifesting themselves in a periodic fashion, with their 
action lasting about 10� 2 seconds. On the other hand, 
the soliton disturbance is almost entirely shaped by 
flexoelectric, viscous and elastic effects. We will revisit 
this property in reference to the linear system.

3. Instability of the uniform state

We take the point of view that soliton disturbances 
emerge at the unstability onset of the uniform state. 
For this, we perform a stability analysis of such a state 
to determine the instability threshold, and the corre-
sponding lengths and time scales associated with it. For 
this, we linearise the governing system (42) about the 
uniform state 

ϕ ¼ θ ¼ 0; Φ ¼ pðtÞz; q ¼ 0; Q ¼ Q0;

(46) 

where 

E ¼ � ÑΦ and pðtÞ ¼ cos t: (47) 

Note that the solution (46)-(47) satisfies the initial and 
boundary conditions (35)–(38) with θ0 ¼ ϕ0 ¼ 0, 
c�0 ¼ 1

2Q0, and Φ0 ¼ pðtÞ. This choice of Φ corresponds 
to an alternating electric field in the z-direction, as in the 
experiments in [1]. Our goal is to show that this uniform 
solution is unstable to chevron-like travelling waves. For 
this, we proceed in several steps, that include approx-
imating the original system as follows:

(1) Linearise the system about the equilibrium 
solution.

(2) Since the domain aspect ratio η is of the order of 
10� 3, we average the previously obtained system along 
the direction perpendicular to the plates.

(3) We take the Fourier transform of the resulting 
system with respect to the space variables x and �.

(4) We formulate the conditions on the combined 
parameters and Fourier modes that lead to neutral sta-
bility, and analyse the resulting relations.

The linear system, with respect to the time scale t is 

Bϕt ¼ BRϕ� þ C�Δ�ϕþ L1ηpðtÞθ� þ L2η2Φx�;

Bθt ¼ BRθ� þ C�Δ�θ � pðtÞηΦx � L1ηpðtÞϕ� þ L2η2Φxz;

ðJ � 1Þη2Φxx þ Jη2Φ�� þ JΦzz ¼ pðtÞηθx þ L2η2ϕx� þ ηθxz � Mq;
Fqt ¼ FRq� þ Gðλσ η2qxx þ η2q�� þ qzzÞ þ pðtÞQz

þQ0 λσ η2Φxx þ η2Φ�� þΦzz þ ðλσ � 1ÞpðtÞηθx
� �

;

FQt ¼ FRQ� þ Gðλση2Qxx þ η2Q�� þ QzzÞ þ pðtÞqz:

8
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>>>>>>:

(48) 

Remark 1. Observe that if the flexoelectric terms are 
removed (L1 ¼ L2 ¼ 0), the equation for ϕ is simply

Bϕt ¼ BRϕ� þ CΔ�ϕ; (49) 

which is the heat equation with a lower-order terms. 
Without flexoelectricity, there is no forcing in the equa-
tion, and the ϕ profile will dissipate to zero. However, 
the experiments show that the ϕ profile is roughly con-
stant in time. This provides strong evidence that the 
flexoelectricity is indeed responsible for the formation 
of the chevrons.

3.1. Space averaging

The averaging performed next, while reducing the 
problem to the two-dimensional space variables x 
and � is consistent with the three-dimensional nature 
of the chevron [1]. In particular, it allows for the 
trivial boundary conditions on the angular and con-
centration variables to hold on the boundary plates 
z ¼ 0 and z ¼ 1, and the electric field taking the 
prescribed values on the electrodes. This, in turn, is 
consistent with the observation that the director dis-
ruption occurs in a thin region around the middle of 
the domain. Motivated by the techniques of approx-
imating functions by sums of orthogonal polynomials, 
we assume that the z-dependence of the fields follows 
the parabolic profile, 

ϕ ¼ rðzÞ~ϕðx; �; tÞ; θ ¼ rðzÞ~θðx; �; tÞ; Φ ¼ rðzÞ~Φðx; �; tÞ;
q ¼ rðzÞ~qðx; �; tÞ; Q ¼ rðzÞ~Qðx; �; tÞ;

(50) 

where rðzÞ ¼ 6zð1 � zÞ. Then 

f 1
0 rðzÞ dz ¼ 1; f 1

0 r0ðzÞ dz ¼ 0;
f 1
0 r00ðzÞ dz ¼ � 12;

(51) 

so after averaging in z (and dropping the tildes), the 
linear system (48) becomes 

Bϕt ¼ BRϕ� þ Cðη2ϕxx þ η2ϕ�� � 12ϕÞ þ L1ηpðtÞθ� þ L2η2Φx�;

Bθt ¼ BRθ� þ Cðη2θxx þ η2θ�� � 12θÞ � p2ðtÞθ � pðtÞηΦx � L1ηpðtÞϕ�;

ðJ � 1Þη2Φxx þ Jη2Φ�� � 12JΦ ¼ pðtÞηθx þ η2L2ϕx� � Mq;
Fqt ¼ FRq� þ Gðλσ η2qxx þ η2q�� � 12qÞ þ Q0ðλσ η2Φxx þ η2Φ�� � 12ΦÞ
þQ0ðλσ � 1ÞpðtÞηθx:

8
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(52) 

and 
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FQt ¼ FRQ� þ Gðλση2Qxx þ η2Q�� � 12QÞ (53) 

The equation (53) for Q decouples from the rest of the 
system, so it can be disregarded. The total concentration 
of ions enters (52) only through the constant Q0.

3.2. Fourier analysis

We adopt the method of the Fourier transform to deter-
mine instability thresholds of the base solution (46)– 
(47). The perturbation functions are twice continuously 
differentiable and are also elements of L1ðR 2Þ. This 
assumptions are consistent with two of the main aspects 
of the phenomenon: the triggering body force mechan-
ism due to the applied electric field, rather than condi-
tions at the boundary, and the persistence of the 
uniform base configuration away from the plane centre 
region. This justifies the trivial extension of the base 
solution to the entire x � � plane.

We start with applying the Fourier transform to (52) 
in both x and �, i.e. 

f̂ ðρx; ρ�Þ ¼
ð

R 2
f ðx; yÞexp � 2πiðρxx þ ρ��Þ

� �
dx d�:

(54) 

Poisson’s equation gives 

Φ̂ ¼
1

4ΔJðρx; ρ�Þ
4π2η2L2ρxρ�ϕ̂ � 2πiηpðtÞρxθ̂þMq̂
� �

(55) 

with 

ΔJðρx; ρ�Þ ¼ ðJ � 1Þη2π2ρ2
x þ Jη2π2ρ2

� þ 3J: (56) 

In order to solve (55), we assume that ΔJðρx; ρ�Þ�0. 
Substituting (55) into the remaining equations for ϕ̂, θ̂ 
and q̂ in (52) yields 

Bϕ̂t ¼ 2πiBRρ� � 4CΔ1ðρx; ρ�Þ �
4π4L2

2η4ρ2
xρ2
�

ΔJðρx; ρ�Þ

" #

ϕ̂ 

þ 2πiηρ�pðtÞ L1 þ
π2L2η2ρ2

x
ΔJðρx; ρ�Þ

 !

θ̂ �
π2L2Mη2ρxρ�

ΔJðρx; ρ�Þ
q̂;

(57) 

Bθ̂t ¼ 2πiBRρ� � 4CΔ1ðρx; ρ�Þ � 1þ
π2η2ρ2

x
ΔJðρx; ρ�Þ

 !

p2ðtÞ

" #

θ̂ 

� 2πiηρ� L1 þ
L2π2η2ρ2

x
ΔJðρx; ρ�Þ

 !

ϕ̂pðtÞ �
πiMηρx

2ΔJðρx; ρ�Þ
q̂pðtÞ

(58) 

Fq̂t ¼ 2πiFRρ� � 4GΔσðρx; ρ�Þ �
Q0MΔσðρx; ρ�Þ

ΔJðρx; ρ�Þ

 !

q̂

� 4π2η2Q0L2ρxρ�
Δσðρx; ρ�Þ
ΔJðρx; ρ�Þ

ϕ̂ 

þ 2πiηQ0ρx λσ � 1þ
Δσðρx; ρ�Þ
ΔJðρx; ρ�Þ

 !

θ̂pðtÞ; (59) 

where 

Δσðρx; ρ�Þ ¼ 3þ π2η2ðλσρ2
x þ ρ2

�Þ; Δ1ðρx; ρσÞ

¼ 3þ π2η2ðρ2
x þ ρ2

�Þ: (60) 

Our goal is to identify neutrally stable solutions of the 
previous system that also allow for the sustained time 
oscillation of the out of plane angular variable θ. Now, 
let us formally write the system as 

ut ¼ AðtÞu; u ¼ ϕ̂ θ̂ q̂
� �

; (61) 

where A is directly obtained from the coefficients of 
equations (57)-(59). Suppressing the dependence of 
Δ1, ΔJ , and Δσ on ρx and ρ�, we find that the components 
of the matrix A are: 

A11 ¼ V � a11;

A12ðtÞ ¼ � A21ðtÞ

¼
2πiηρ�

BΔJ
JL1Δ1 þ π2η2ðL2 � L1Þρ2

x
� �

pðtÞ;

A13 ¼ �
π2L2Mη2ρxρ�

BΔJ
; A22ðtÞ ¼ V � a22ðtÞ;

A23 ¼ �
πiMρxη

2BΔJ
pðtÞ;

A31 ¼ �
4π2η2Q0L2ρxρ�

F
Δσ

ΔJ
;

A32ðtÞ ¼
2πiλσQ0ηρx

F
Δ1

ΔJ
pðtÞ; A33 ¼ V � a33;

(62) 

where 

V ¼ 2πiRρ�; a11 ¼
4
B

CΔ1 þ
π4L2

2η4ρ2
xρ2
�

ΔJ

 !

; (63) 

a22ðtÞ ¼
4C
B

Δ1 �
J
B

Δ1

ΔJ
p2ðtÞ :¼ ~a22 �

J
B

Δ1

ΔJ
p2ðtÞ;

a33 ¼
Δσ

F
4Gþ

Q0M
ΔJ

� �

:

(64) 
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Remark 2. We point out that the second term in a22ðtÞ
in (64) is of order Oð1Þ, except for the special wave 
numbers on the line Δ1 ¼ 0. Away from the latter 
case, the separation of time scales, between t and t

B , 
indicates that the p2ðtÞ � term contributes to the initial 
layer of the solution θ; and as such, it should be treated 
separately from the time-t dynamics, as customary in 
initial layer analyses [31]. Consequently, from now on, 
we will omit the p2ðtÞ � term from A22 and a22 and 
replace them with ~A22 and ~a22, respectively.

In order to analyse the stability of the system (61)- 
(62), we restrict the wave number variables to purely 
imaginary, that is, 

Re ρx ¼ Re ρ� ¼ 0: (65) 

The condition (65) simplifies the calculations, but it also 
matches the experimental findings. Since the chevrons 
do not exhibit periodic behaviour in either the x- or y- 
directions, we expect the real parts of the Fourier vari-
ables ρx and ρ� to be zero. Taking ρx and ρ� purely 
imaginary means that solutions display exponential 
growth or decay in both the x- and y-directions. We 
note that, under the assumption (65), all the compo-
nents of A in (62) are real-valued. Let us introduce the 
notation 

cx ¼ � π2η2ρ2
x; c� ¼ � π2η2ρ2

� (66) 

If it follows from the condition (65) that cx; c� � 0. The 
choice of the sign of Imρ� will be done later, when 
sorting out the sign of R. 

Proposition 3.1. Let us consider perturbations satisfying 
(65). Then, the equilibrium solution (46)-(47) of the 
problem (61), for parameter data as in (31), is unstable 
for perturbations whose speed and wave numbers satisfy 

� 6πRImρ�� Hðcx; c�Þ � 0 and ΔJ�0;
Hðcx; c�Þ :¼ 1

BΔJ
½8CΔ1ΔJ þ 4L2

2cxc�ΔJ þ
J
2 Δ1 þ

Δσ
F ð4Gþ BQ0MÞ�;

(67) 

and, with cx and c� as in (66).

Proof. Let μ1, μ2, and μ3 denote the Floquet exponents of 
the system [32]. Recall the trace property of the Floquet 
theory of linear systems with periodic coefficients, that 
is, 

X3

i¼1
μi ¼ f 1

0 trAðtÞ dt; (68) 

trðAÞ ¼ 6πiRρ� �
8CΔ1ðρx; ρ�Þ

B
�

4π4L2
2η2ρ2

xρ2
� þ Jp2ðtÞ

BΔJðρx; ρ�Þ

�
Δσðρx; ρ�Þ

F
4Gþ

Q0M
ΔJðρx; ρ�Þ

 !

:

(69) 

The result follows by integrating (69) with respect to 
t and taking into account that the diagonal elements are 
all constant, except for the p2ðtÞ term appearing in the 
component A22 of (62), and then setting 1

0trAðtÞdt � 0. 
The positivity of (67) ensures that at least one Floquet 
exponent has positive real part.□

Remark 3. Inequality (67) provides a useful insight in 
finding the threshold conditions that trigger the 
instability of the uniform solution. For this, we need to 
identify wave number parameters that satisfy the equa-
tion Hðcx; c�Þ ¼ 0, for perturbations with speed R ¼ 0. 
In a later section, we will further interpret the wave 
number equation in terms of the eigenvalues of the 
system that characterise the neutral stability of the uni-
form solution.

We summarise the main results of this work on the 
following theorem. For this, we first rewrite the linear 
system (59) in the form 

_u ¼ A0uþ hðtÞ; (70) 

where 

A0
ij ¼ Aij; i ¼ j ¼ 1; 3; A0

22 ¼
~A22;

A0
13 ¼ A13; A0

23 ¼ A23; A0
31 ¼ A31; A0

12 ¼ 0; A0
21 ¼ 0;

h ¼ A12ðtÞθ̂ A21ðtÞϕ̂ A32ðtÞθ̂
� �T

; (71) 

Theorem 3.2. Suppose that εa < 0 and λσ < 1,and that 
the parameters of the problem are as in (27). There exist 
wave numbers ρx; ρ� and perturbation speeds R,for which 
λ1 � λ3 � 0,where λi; i ¼ 1; 3; denote the eigenvalues of 
the matrix A0,so that the solution u ¼ 0 0 0½ �

T of the 
Fourier system (59) is an unstable node. Moreover, for 
the wave numbers and perturbation speeds satisfying the 
stricter relations (99), λ1 � 0 � λ3 hold up to terms of the 
order Oð10� 5Þ. Furthermore, the perturbations that solve 
the approximate linear system obtained from equation 
(59) by time averaging of two appropriate off-diagonal 
terms have the property that the out-of plane angle θ̂ has 
a nonzero phase-shift of approximately π

2 radians with 
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respect to the applied electric field. Moreover, the size of 
the unstable perturbations and the chevron speed fall 
within the experimental range.

Remark 4. The requirement that (99) hold ensures the 
vanishing of the eigenvalues λ1 and λ3. Equivalently, it 
amounts to a selection of wave numbers and speeds of 
the perturbations in the neutral stability regime, that is, 
at the instability threshold, that preserve the shapes of 
the components ϕ and q.

The proof is carried out in the next subsection, and it 
proceeds in four steps. For notational convenience, we 
will suppress the ‘hat’ symbol from the fields ϕ; θ; q:

3.3. Solution of the linear system

Next, we solve the system (61) with respect to the time 
variable t, with the wave numbers playing the role of 
parameters of the system. We further identify ranges of 
such parameters that lead to neutral stability of the solu-
tions. Two approximations will enter the analysis, one 
involving time averaging of two off diagonal terms of the 
order OðLiÞ. A second one, that replaces the positive term 
p2ðtÞ, on the main diagonal of the system, by its one-period 
average 1

2 , is done in order to replace an otherwise longer 
calculation.

Step 1. We start solving the homogeneous system 
(70). It corresponds to the three ordinary differential 
equations 

ϕt
qt

� �

¼
A11 A13
A31 A33

� �
ϕ
q

� �

; (72) 

θt ¼ A0
22θþ A23ðtÞq: (73) 

The characteristic equation associated with the problem 
(72) is 

λ2 � trðA0Þλþ det A0 ¼ 0: (74) 

The roots are 

λ1 ¼
1
2
½trðA0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2ðA0Þ � 4 det A0

p
�;

λ3 ¼
1
2
½trðA0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2ðA0Þ � 4 det A0

p
�:

(75) 

Let us rewrite 

λ1;3 ¼
1
2
½ðA11 þ A33Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA11 � A33Þ
2
þ A13A31

q

�:

(76) 

The corresponding eigenvectors are 

v1 ¼
ω1
1

� �

; v3 ¼
ω3
1

� �

; (77) 

where 

ω1 :¼ �
A13

A11 � λ1
; ω3 :¼ �

A13

A11 � λ3
; ω1�ω3:

(78) 

The general solution to the system (72) is 

ϕðtÞ
qðtÞ

� �

¼ a0eλ1tv1 þ b0eλ3tv3; (79) 

where a0 and b0 are arbitrary constants. Note that two 
relevant cases arise according to the nature of the eigen-
values λ1; λ3: 

ðiÞ : tr2ðA0Þ � 4 det A0 � 0; and
ðiiÞ : tr2ðA0Þ � 4 det A0 < 0:

(80) 

They correspond to the equilibrium solution ½0; 0�T 

of (72) being, (i) a node or saddle point, or (ii) 
a spiral. To help us determine the wave number 
ranges consistent with the soliton-like instability, 
we set up the following lemma. 

Lemma 3.3. Assume that trA0 � 0: Let us consider wave 
numbers such that ((65)) holds. Then for both cases (i) 
and (ii) in (80) the ½0; 0�T solution of (72) is unstable. 
Furthermore, for parameter values as in (31),the product 

A13A31 ¼
L2

2MQ0

BF
Δσ

Δ2
J

cxc� ¼ 0 , Δσ ¼ 0: (81) 

Let us consider the wave number range such that 

λ1 � λ3 � 0: (82) 

We will find that such a range is consistent with 
(81) being satisfied to the order OðL2

i � 10� 2Þ. In 
such a case, ½0; 0�T is an unstable node. Let us now 
consider the solution to (72) along the invariant 
line v1 ¼ 0; and apply it to equation (73), that 
now takes the form 

θt ¼ A0
22θþ b0A23ðtÞeλ3t: (83) 

Note that departure from the branch v1 eliminates 
the highest decay rate, λ1, from the solution. The 
general solution of the latter equation is then 

ΘðtÞ ¼ expð
ðt

0
A0

22ðsÞdsÞðC0 þ XðtÞÞ; (84) 

XðtÞ :¼ b0

ðt

0
exp½�

ðs

0
A0

22ðuÞdu�A23ðsÞeλ3s ds; (85) 
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where b0 and C0 are arbitrary constants. We also make 
the simplifying assumption of replacing A22ðtÞ by its 
average on the interval ½0; 1�, and we arrive at 

XðtÞ ¼
ðt

0
eðλ3� A0

22ÞsA23ðsÞds  

¼
M ffiffiffifficx
p

2BΔJ

eðλ3� A0
22Þt

ðλ3 � A0
22Þ

2
þ 4π2

½2π sin 2πt þ ðλ3 � A0
22Þ cos 2πt�:

Hence, 

ΘðtÞ ¼ C0eA0
22t

þ b0
M ffiffiffifficx
p

2BΔJ

eλ3t

ðλ3 � A0
22Þ

2
þ 4π2

½2π sin 2πt

þ ðλ3 � A0
22Þ cos 2πt�: (86) 

We immediately observe the phase shift of the out-of- 
plane angular component with respect to the applied 
AC field that we shall estimate later.

A fundamental matrix solution of the system (70) 
and its inverse are given as 

UðtÞ ¼
ω1eλ1t 0 ω3eλ3t

0 ΘðtÞ 0
eλ1t 0 eλ3t

2

4

3

5; (87) 

U� 1ðtÞ ¼
1

ðω1 � ω3Þeðλ1þλ3ÞtΘðtÞ

ΘðtÞeλ3 t 0 � ω3ΘðtÞeλ3 t

0 eðλ1þλ3Þtðω1 � ω3Þ 0
� ΘðtÞeλ1 t 0 ω1ΘðtÞeλ1 t

2

4

3

5

(88) 

Step 2. Prior to solving the non-homogeneous system 
(70) we carry out an additional time-averaging, with the 
goal of simplifying the problem. Note that the first 
and second components of the vector field h, A12θ and 
A21ϕ; respectively, have the structure A12ðtÞ, Li

B pðtÞ:
We apply the averaging result that approximates solu-
tions of a system of the form 

_x ¼ �f ðt; x; �Þ; (89) 

where 0< � is a small parameter, with those of 

_x ¼ fAðx; 0Þ: (90) 

Here fA denotes the function that results from averaging 
the original f with respect to its explicit t-dependence, 
over an interval that, in our case, corresponds to a full 
period ½0; 1�. The transformation from our original sys-
tem (70) to one of the form (89) proceeds by a standard 
change of variable. The accuracy of the approximation 
relies on the smallness of � [33].

Step 3. Next, we solve the averaged simplified non- 
homogeneous system (70). First, we set up the variation 
of constant formula that now reads as 

uðtÞ ¼ UðtÞ½U� 1ð0Þuð0Þ þ
ðt

0
U� 1ðsÞ

0
0

A32ðsÞqðsÞ

2

4

3

5ds�:

(91) 

Details of the calculation of the terms in the previous 
equation are shown in the Supplemental Materials sec-
tion. They lead to the solution 

ϕðtÞ ¼
1

ω1 � ω3
fðeλ1tω1 � eλ3tω3Þϕð0Þ

þ ω1ω3ð� eλ1t þ eλ3tÞqð0Þ

þ ω1ω3

ðt

0
A32ðsÞθðsÞðeλ3ðt� sÞ � e� λ1ðt� sÞÞdsg (92) 

θðtÞ ¼ ΘðtÞ; (93) 

qðtÞ ¼
1

ω1 � ω3
fðeλ1t � eλ3tÞϕð0Þ

þ ð� ω3eλ1t þ ω1eλ3tÞqð0Þ

þ C2θð0Þð
1

λ2
1 þ 4π2

½λ1eλ1t � λ1 cos 2πt þ 2π sin 2πt�

þ
C1

2ðλ2
1 þ 16π2Þ

½� λ1 sin 4πt � 4π cos 4πt þ 4πeλ1t�Þ;

(94) 

with as in (86), and 

C1 ¼
M ffiffiffifficx
p

4BπΔJ
; C2 ¼

2λσQ0Δ1

FΔJ

ffiffi
c
p

x: (95) 

Step 4. We now summarise the neutral stability condi-
tions that determine the speed and size range of the 
soliton-like distortions. These are of two types, invol-
ving the selection of special sets of initial data, and 
restrictions on the eigenvalues. First of all, from equa-
tion (86), we find two cases that lead to related but 
different instabilities: 

C0 ¼ 0; λ3 ¼ 0 and λ3 � A0
22�0; or (96) 

λ3 ¼ A0
22; and λ3 ¼ 0: (97) 

Note that the third condition in (96) guarantees that 
Θð0Þ�0, needed for the invertibility of the fundamental 
matrix solution. Either set of relations also guarantee the 
preservation of the shape of θðtÞ with time and its phase 
shift with respect to the applied electric field. Finally, to 
preserve the shape of ϕ and q, we additionally require 

λ1 ¼ 0: (98) 
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The observation in lemma (3.3) that A13A31 ¼
4L2

2MQ0Δσ

BFΔ2
J

cxc�, with L2
2 ¼ Oð10� 6Þ, together with ΔJ�0, 

allows us to obtain approximate forms of the vanishing 
conditions on the eigenvalues λ1 and λ3 in (76) as 

A11 ¼ A33 and A11 þ A33 ¼ 0: (99) 

The latter equation provides an expression of the tuxedo 
speed V as 

2V ¼ a11 þ a33

¼
1

ΔJ
½
4
B
ðCΔ1ΔJ þ L2

2cxc�Þ þ
Δσ

F
ð4GΔJ þ Q0MÞ�:

(100) 

The first equation in (99) evaluated at the parameter 
values of the problem, corresponds to the line 

c� þ 0:7878cx ¼ 2:9740: (101) 

Remark 5. We find that, on the line (101), Δσ ¼ Oð10� 2Þ

providing the estimate A13A31 ¼ OðL2
i � 10� 2Þ stated 

after Lemma (3.3). Furthermore, Δ1�0, for cx�0, holds 
for wave numbers on the line (101). The later justifies the 
initial layer argument stated in remark (2).

Moreover, evaluating V given by (100) on the curve 
(101) gives 

V ¼
1

ΔJ
½
Δσ

F
ð4GΔJ þ Q0MÞ�: (102) 

The expression in (102) indicates that the sign of V is 
identical to that of Δσ , provided ΔJ > 0:We now evaluate 
V in (102) on the line (101) to get 

V ¼
0:0260 � 0:0127cx

FΔJðcx; c�ðcxÞÞ
ð4GΔJ þ Q0MÞ; (103) 

where the ΔJ expression in the denominator is evaluated 
on the line (101), where it satisfies ΔJ > 0 (see also figure 2) 
. We observe that 

ðiÞV > 0 for cx < 2:0472; V ¼ 0 at cx ¼ 2:0472 and
ðiiÞV < 0 for 3:7751 � cx > 2:0472;

(104) 

where the upper bound on cx on the region of V < 0 
corresponds to the cx-intercept of the line (101). The 
following lower bound on c� follows from equation 
(101) and is associated with the cx-interval indicated in 
(104), for the case V < 0“ 

0 � c� � 1:3612 :¼ cmax
� : (105) 

We summarise the latter results on the graphs of 
Figure 2 and obtain estimates for the size of the distur-
bance. First of all, it is immediate to recover the wave 
numbers ρx and ρ� from the quantities cx and c�, and 
subsequently derive estimates for the tuxedo size, that is, 
the width Lx and the length L�: 

jρxj ¼
ffiffiffi
cx
p

πη ; jρ�j ¼
ffiffiffic�
p

πη ;

L� ¼ jρ�j
� 1
�

πηffiffiffiffiffiffiffiffiffi
1:3621
p :¼ Lmin

� ¼ 2:6918η
πηffiffiffiffiffiffiffiffiffi

2:0472
p ¼ 2:1957η ¼ � Lx ¼ jρxj

� 1
�

πηffiffiffiffiffiffiffiffiffi
3:7751
p ¼ 1:6169η:

(106) 

We note that the absolute value notation used in the 
expressions of the wave numbers is consistent with the 
assumptions (65). From the estimates in (106), we see 
that 

Lmin
x;phys ¼ 1:6169d and Lmin

�;phys ¼ 2:6918d; (107) 

Figure 2. The top line on the figure on the left corresponds to the equation
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where the latter quantities denote the dimensional sizes 
of the tuxedo on the units of the plate gap d. Comparing 
the length of the soliton package with that of the elec-
trode plate L, we find that 

L ¼ 0:33� Lmin
�;phys � 103: (108) 

From the point of view of the order of magnitude, the 
previous result agrees with the statement in [34] that the 
solitons travel on a plate several thousands of their own 
size.

We recall that the experimentally measured sizes, the 
width Lw and length Ll, of the soliton-like disturbances 
are reported as 

Lw ¼ 2d; 20μm< Ll < 50μm: (109) 

Note that, for d ¼ 8μm, the latter can be written as 

2:5dμm< Ll < 6:25dμm; (110) 

showing an excellent agreement with the lower bound 
(107) of the soliton length predicted by our model.

In particular, the lower bound for the length corre-
sponds to 

cl ¼ 0:6806 ¼
1
2

cmax
� (111) 

Next, we evaluate the phase-shift of the out-of-plane 
angle θ in (86). For this, we calculate 

½2π sin 2πt þ ðλ3 � A0
22Þ cos 2πt�

¼ 2π½sin 2πt þ
λ3 � A0

22
2π

cos 2πt� ¼ 2π sinð2πt � αÞ;

(112) 

with 

sin α �
4C

2πB
¼ Oð10� 2Þ; (113) 

where we have applied the second relation in (96) as well 
as (64).

Finally, let us calculate the speed R of the soliton-like 
packages. First, note that 

V ¼ 2πRiρ� ¼ � 2πRImρ� < 0, RImρ� > 0: (114) 

Hence, the cx-region such that V < 0 corresponds to 
R> 0, that is, the soliton disturbance travelling along 
the positive y-direction, provided Imρx > 0. 
Furthermore, referring to the formula for the inverse 
Fourier transform, we find that Imρ� > 0 corresponds to 
exponential decay along the positive y-direction. This, 
indeed, seems to correspond to the realistic physical 
setting, indicating that the perturbation has not yet 
reached, at time t > 0, locations such that y > >Rt.

Let us now compare the experimentally measured speed 
range R in (34) with the values displayed in the graph in 
figure 2. We first note that, for the aspect ratio 
η ¼ 1:6� 10� 3, the experimental range previously 
referred to yields 

0:0275 �
R
η
� 0:1400: (115) 

The discussion on the predicted soliton-like sizes in 
(106) suggests that the corresponding speeds, as 
shown in the graph of R � c� in figure 2, fit towards 
the lower bound indicated in (115). If smaller soli-
tons than the latter ones are to be taken into 
account, they would travel at speeds below than 
the lower bound in (115), up to an order of magni-
tude smaller. In conclusion, a decrease of the inter- 
plate gap d would bring a tighter agreement with 
the experimental findings.

We discard the solutions corresponding to V > 0 in 
(101) that would yield disturbances with an exceed-
ingly large horizontal size, vertically too short, and 
also with an incompatible growth rate. ΔJ ¼ 0. The 
bottom line on the same figure is the graph of equa-
tion (101), indicating that ΔJ > 0 on the points of the 
threshold line. The figure on the right represents the 
ratio, R

η , of the dimensionless speed of the soliton-like 
disturbance over the aspect ratio, as predicted by the 
model. The experimental measurements give Rmin

η ¼

0:0275 and Rmax
η ¼ 0:14.

4. Conclusion

In this article, we have developed a time-dependent 
model of a flexoelectric nematic liquid crystal that 
couples elastic, viscous, conducting, dielectric and 
flexoelectric effects. We use linear analysis to inves-
tigate the three-dimensional solitons observed when 
such a material is subject to an alternating electric 
field, within the appropriate range of intensity and 
frequency. The work focuses on finding the instabil-
ity threshold of the uniformly aligned nematic, and 
yields estimates on the size, phase-shift and speed of 
the soliton-like package. The length and speed of the 
soliton predicted by the model fall towards the lower 
range of the experimentally measured ones. The 
work presented here is the first part of the three 
article set devoted to the study of the physical soli-
tons reported in [34]. A forthcoming nonlinear ana-
lysis aims at correcting the lower predictions of the 
present linear model, which will also address finer 
aspects of the soliton shape, such as the size of the 
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head versus the tail. Finally, the third article will 
focus on the well posedness of flexoelectric nematic 
models that present additional nontrivial challenges 
due to the higher order gradient of the theory, com-
pared with standard nematic.
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