
Estimating the ARMA Model

John A. Dodson

January 8, 2022

Model

The autoregressive moving average model is useful for extracting latent i.i.d. innovations from a stationary
timeseries exhibiting serial autocorrelation.

Let the timeseries be (Xt)t=1,2,...,T . The ARMA(1,1) specification is a linear recursion with one autore-
gressive lag and one moving average lag:

Xt = c+ ϕXt−1 + θεt−1 + εt with i.i.d. ε1,2,...,T ∼ N
(
0, σ2

)
(1)

initialized with ε0 = 0 and X0 =
c

1−ϕ .
Unconditional expectation informs the choice for the initialization. E εt = 0 and

EXt = c+ ϕEXt−1

= c+ ϕEXt

⇒ (1− ϕ)EXt = c

EXt =
c

1− ϕ
(2)

To evaluate the (unconditional) variance, introduce the lag operator to re-express the model in terms of
the residuals.

Xt = c+ ϕLXt + (1 + θL)εt

⇒ (1− Lϕ)Xt = c+ (1 + θL)εt

Xt =
c

1− ϕ
+ (1 + ϕL+ ϕ2L2 + · · ·)(1 + θL)εt

=
c

1− ϕ
+ εt + (ϕ+ θ) εt−1 + (ϕ+ θ)ϕ εt−2 + (ϕ+ θ)ϕ2 εt−3 + · · · (3)

So, since the residuals are independent,

varXt =
(
1 + (ϕ+ θ)2 + (ϕ+ θ)2ϕ2 + (ϕ+ θ)2ϕ4 + · · ·

)
σ2

=

(
1 +

(ϕ+ θ)2

1− ϕ2

)
σ2 (4)

More about the statistical properties of the model are in the appendix.

1

Estimation

Since the probability density of the t-th residual is

lim
∆→0

P {x < εt < x+∆}
∆

=
1√
2πσ2

e−
x2

2σ2

the negative log-likelihood associated with a single observation is

Ĥt

(
c, ϕ, θ, σ2

)
= 1

2 log
(
2πσ2

)
+

ε̂2t
2σ2

(5)

where ε̂t is defined recursively:

ε̂t = Xt − c− ϕXt−1 − θ ε̂t−1 for t = 2, 3, . . . , T

ε̂1 = X1 −
c

1− ϕ

(6)

Since the residuals are independent, the negative log-likelihood of the whole sample is just the sum

T∑
t=1

Ĥt

(
c, ϕ, θ, σ2

)
Recognizing the connection between maximum likelihood and minimum posterior entropy, define

H̄ =
1

T

T∑
t=1

Ĥt ≈ EHt

in terms of which the maximum likelihood estimate of the parameters solves the optimization problem

û = arg min
c,ϕ,θ,σ2

H̄
(
c, ϕ, θ, σ2

)
(7)

Newton’s method presents an efficient approach to numerical problems of this sort—especially so in the
log-likelihood setting since we can avoid evaluating the hessian explicitly by recalling that

∂2 EHt

∂u ∂u′
= cov

∂Ht

∂u′

for u =
(
c, ϕ, θ, σ2

)′ or any equivalent parameterization. So we only need to evaluate the first partials of
the likelihood. We can estimate the curvature from their sample covariance.

Partials

The ARMA parameters are implicit in Ĥt. They come in through ε̂t. To evaluate the log-likelihood partials,
start with the explicit partials σ2 and ε̂t:

∂Ĥt

∂σ2
=

(
1− ε̂2t

σ2

)
1

2σ2

∂Ĥt

∂ε̂t
=

ε̂t
σ2

2

hence

∂Ĥt

∂c
=

ε̂t
σ2

∂ε̂t
∂c

∂Ĥt

∂ϕ
=

ε̂t
σ2

∂ε̂t
∂ϕ

∂Ĥt

∂θ
=

ε̂t
σ2

∂ε̂t
∂θ

and the partials of ε̂t involve linear recursions similar to the linear recursion of ε̂t

∂ε̂1
∂c

= − 1

1− ϕ
,

∂ε̂1
∂ϕ

= − c

(1− ϕ)2
,

∂ε̂1
∂θ

= 0 ,

∂ε̂t
∂c

= −1− θ
∂ε̂t−1

∂c
for t = 2, . . . , T

∂ε̂t
∂ϕ

= −Xt−1 − θ
∂ε̂t−1

∂ϕ
for t = 2, . . . , T

∂ε̂t
∂θ

= −ε̂t−1 − θ
∂ε̂t−1

∂θ
for t = 2, . . . , T

This can all be collected into a function to produce the T × 4 quantities that make up{
∂Ĥt

∂u

∣∣∣∣∣
u0

}
t=1,2,...,T

for some candidate values of the parameters u0, of which we can calculate the sample mean and covariance

µ̂0 =
1

T

T∑
t=1

∂Ĥt

∂u′

∣∣∣∣∣
u0

Σ̂0 =
1

T

T∑
t=1

∂Ĥt

∂u′

∣∣∣∣∣
u0

∂Ĥt

∂u

∣∣∣∣∣
u0

(8)

The Newton scheme is
ui+1 = ui − γiΣ̂

−1
i µ̂i (9)

for some sequence of step sizes γi ∈ (0, 1] each small enough so that H̄(ui+1) progressively decreases.
If u0 is close enough to the solution, this will converge to the maximum likelihood estimate û = u∞ at

a quadratic rate, whereby µ̂∞ = 0 and Σ̂∞ is the asymptotic (T → ∞) Fisher information.

Targeting

In economic applications (for example), it is conventional to incorporate sample moments into the estimation
of less easily observed parameters. This is an approximation, of course, but it can be effective. In this case,
we can easily evaluate the sample mean and sample variance of {Xt}t=1,...,T , and if we restrict the search
to the parameter subspace defined by these two quantities, the dimension of the problem reduces from four
to two.

3

Fixing the mean and variance atM and V , the negative log-likelihood of an observation becomes

Ĥ ′
t(ϕ, θ) =

1
2 log (2πV)− 1

2 log

(
1 +

(ϕ+ θ)2

1− ϕ2

)
+

ε̂′t
2

2V

(
1 +

(ϕ+ θ)2

1− ϕ2

)

in terms of the recursion

ε̂′t = Xt −M − ϕ (Xt−1 −M)− θ ε̂′t−1

ε̂′1 = X1 −M

To simplify the expression of the log-likelihood in this form, introduce the function

γ(ϕ, θ) = 1 +
(ϕ+ θ)2

1− ϕ2

with partials

∂γ

∂ϕ
= 2

(ϕ+ θ) (1 + ϕ θ)

(1− ϕ2)2

∂γ

∂θ
= 2

ϕ+ θ

1− ϕ2

In these terms, the partials of Ĥ ′
t are

∂Ĥ ′
t

∂ϕ
=

(
ε̂′t

2

V /γ
− 1

)
(ϕ+ θ) (1 + ϕ θ)

(1 + 2ϕ θ + θ2) (1− ϕ2)
+

ε̂′t
V /γ

∂ε̂′t
∂ϕ

∂Ĥ ′
t

∂θ
=

(
ε̂′t

2

V /γ
− 1

)
ϕ+ θ

1 + 2ϕ θ + θ2
+

ε̂′t
V /γ

∂ε̂′t
∂θ

and

∂ε̂′t
∂ϕ

= M −Xt − θ
∂ε̂′t−1

∂ϕ
,

∂ε̂′1
∂ϕ

= 0

∂ε̂′t
∂θ

= −ε̂′t−1 − θ
∂ε̂′t−1

∂θ
,

∂ε̂′1
∂θ

= 0

Note that, to the extent that γ is constant close to the solution, minimizing H̄ ′ is essentially minimizing
the sum of squared residuals1. Presumably this is a motivation for the heuristic of using linear regression to
identify ARMA parameters that one sometimes encounters in the literature. Ones hopes those authors are
aware of this limitation, which in particular depends on ϕ+ θ being close to zero.

1The implementation in the R statistics domain-specific language uses a mis-named ‘exact maximum likelihood’ algorithm
which is also based on minimizing the sum of squared residuals.

4

References

[1] Larry Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific
Journal of Mathematics, 16(1):1–3, January 1966.

[2] Ernst K. Berndt, Bronwyn H. Hall, Robert E. Hall, and Jerry A. Hausman. Estimation and inference
in nonlinear structural models. Annals of Economic and Social Measurement, 3(4):653–665, October
1974.

Appendix A: Serial Autocorrelation

From (3), the expression of the process in terms of the latent i.i.d. residuals, it is straight-forward to evaluate

cov (Xt, Xt−h) = ϕh−1 (ϕ+ θ) (1 + ϕθ)

1− ϕ2
σ2

for h = 1, 2, · · · .
Dividing through by the variance we get the autocorrelation, which has an elegant form:

ρh = cor (Xt, Xt−h) =
ϕh−1

1
ϕ+θ +

1
ϕ+1/θ

This result has several consequences. First, since correlation is only meaningful if it is between−1 and +1,
it is clear that |ϕ| ≤ 1. Second, it seems that θ and 1/θ are interchangeable in the expression for correlation.
In fact, the expression for the variance can also be written as

varXt =

(
1 +

(ϕ+ θ)2

1− ϕ2

)
σ2

=

(
1 +

(ϕ+ 1/θ)2

1− ϕ2

)
θ2σ2

so replacing θ by its inverse can be compensated for by scaling the residual variance by θ2 (and reversing
the order and possibly signs of the i.i.d. residual variates). So, without loss of generality, we can assume
|θ| ≤ 1. Third, the supported autocorrelation has a particular functional form,

ρh = ϕρh−1 , h = 2, 3, . . .

ρ1 =
1

1
ϕ+θ +

1
ϕ+1/θ

Hence ϕ and θ are determined by the first two autocorrelations:

ϕ =

{
ρ2
ρ1

ρ1 ̸= 0

0 ρ1 = 0

θ =

{
ζ−1 − sgn(ζ)

√
ζ−2 − 1 ζ ̸= 0

0 ζ = 0

where ζ =
2ρ1

(
ρ21 − ρ2

)
ρ21 (1− 2ρ2) + ρ22

for any −1 ≤ ρ1 ≤ 1 and |ρ1| (2|ρ1| − 1) ≤ ρ2 ≤ |ρ1|.

5

Appendix B: Sample Julia2 implementation

module ARMA

"residual timeseries for the ARMA model for X for parameters vector [c,ϕ,θ]"
function arma(X::Vector,params::Vector)

n = length(X)
c,ϕ,θ = params
ε = fill(NaN,n)
if abs(ϕ) < 1 && abs(θ) < 1

ε[1] = X[1]-c/(1-ϕ)
for i = 2:n

ε[i] = X[i]-c-ϕ*X[i-1]-θ*ε[i-1]
end

end
return ε

end

"gradient of ARMA residual wrt parameters [c,ϕ,θ] in the form of a timeseries of vectors"
function arma_grad(X::Vector,params::Vector)

n = length(X)
c,ϕ,θ = params
ε = arma(X,params)
∇ = fill(fill(NaN,3),n)
if abs(ϕ) < 1 && abs(θ) < 1

∇[1] = [-1/(1-ϕ), -c/(1-ϕ)^2, 0]
for i = 2:n

∇[i] = [-1-θ*∇[i-1][1], -X[i-1]-θ*∇[i-1][2], -ε[i-1]-θ*∇[i-1][3]]
end

end
return ∇

end

"""timeseries of the negative quasi log-likelihood of the ARMA fit of X
with parameters [σ²,c,ϕ,θ] in the form of a vector"""
function h(X::Vector,u::Vector)

σ² = u[1]
params = u[2:end]
if σ² ≤ 0

return fill(NaN,length(X))
end
ε = arma(X,params)
return (log(2π*σ²).+ε.^2/σ²)/2

end
2https://julialang.org

6

https://julialang.org

"""gradient of the negative quasi log-likelihood of the ARMA fit
in the form of a timeseries of vectors"""
function h_grad(X::Vector,u::Vector)

σ² = u[1]
params = u[2:end]
if σ² ≤ 0

return fill(fill(NaN,length(u)),length(X))
end
ε = arma(X,params)
return vcat.((1 .-ε.^2/σ²)/(2σ²), ε/σ².*arma_grad(X,params))

end

"Newton's method minimizer"
function newt(func::Function,grad::Function,hess::Function,u₀::Vector

;maxiter=100,tol=1.E-14,δ=1.E-4)
u₁ = u₀
h₁ = func(u₁)
if isnan(h₁)

throw(DomainError(u₀,"invalid initial value"))
end
N = maxiter
k = 0
while N > 0

u₀ = u₁
h₀ = h₁
grad₀ = grad(u₀)
hess₀ = hess(u₀)
k = 0
while N > 0 && (k == 0 || isnan(h₁) || h₁ > h₀+δ*transpose(u₁-u₀)*grad₀)

u₁ = u₀-hess₀\grad₀/2^k
h₁ = func(u₁)
k += 1
N -= 1

end
if abs(h₁-h₀) < tol

return u₁
end

end
throw(ErrorException("convergence criterion not met at u = $u₁"))

end

"""BHHH scheme for the maximum likelihood estimator for the ARMA model
with parameters [σ²,c,ϕ,θ]. Inferred residuals are i.i.d. normal with variance σ²"""
function arma_mle(X::Vector)

7

n = length(X)
func = u -> sum(h(X,u))/n
grad = u -> sum(h_grad(X,u))/n
hess = u -> sum([∇*transpose(∇) for ∇ in h_grad(X,u)])/n
M = sum(X)/n
V = sum((X.-M).^2)/n
ϕ₀,θ₀ = 0.,0.
u₀ = [V/(1+(θ₀+ϕ₀)^2/(1-ϕ₀^2)),M*(1-ϕ₀),ϕ₀,θ₀]
return newt(func,grad,hess,u₀)

end

"log-likelihood for the ARMA fit to timeseries X"
function arma_log_likelihood(X::Vector,u::Vector)

return -sum(h(X,u))
end

"Fisher information matrix for parameters [σ²,c,ϕ,θ] with respect to timeseries sample X"
function arma_fisher_information(X::Vector,u::Vector)

return sum([∇*transpose(∇) for ∇ in h_grad(X,u)])/length(X)
end

export arma, arma_mle, arma_log_likelihood, arma_fisher_information

end # module

8

