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Motivation

I Conditional heteroskedasticity in returns is a common
stylized fact of timeseries for prices and other financial
risk factors.

I A common approach to dealing with this is to extract
standard white noise through the application of a model
in the generalized auto-regressive framework such as
GARCH fit using quasi-maximum likelihood.

I This can fail to be robust, both in fitting and in
simulation, because it assumes that the sample entropy
is solely determined by the conditional variance.
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Contribution

We propose an alternate model for extracting standard white
noise from financial timeseries. There are two separate
aspects of this proposal:

1. a method for updating the model parameters from a
stream of observations, and

2. a particular version of the skewed Student’s-t for the
residual which has useful properties.

The framework we propose yields models which are strictly
distinct from GARCH but are contained within the larger
class of models from the GAS (Generalized Autoregressive
Score) framework of Creal, Koopman, & Lucas.
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Digression: Updating by Perturbation

Say we have an i.i.d. N-sample {x1, x2, . . . , xN} of a random
variable, X , whose distribution is known except for the
variance h > 0, which we assume is finite

I Since we know the mean, wlog assume E[X ] = 0

The probability density of the (univariate) X is

fX (x ; h) = fZ

(
x√
h

)
1√
h

for some known random variable, Z , with zero mean and
unit variance.
Assuming fZ (·) is smooth, the maximum likelihood estimate,
ĥ, is a root of L′(·) where

L(h) = −N

2
log h +

N∑
i=1

log fZ

(
xi√
h

)
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Updating by Perturbation

Say we already have an a priori estimate of the variance ĥ−

and we want to update it with this new sample. Denote the
updated estimate by ĥ. If we can consider this update as a
perturbation, the MLE can be approximated by Newton’s
method, which is based on the series expansion

0 ≈ L′(ĥ−) + L′′(ĥ−)(ĥ − ĥ−)

for L′′(ĥ−) 6= 0. Unfortunately this condition is not
guaranteed for all h in the domain and x in the support, X .
But it is guaranteed for the expected value:

E
[
L′′(h;X )

]
=

∫
X

(
∂2
hfX (x)

fX (x)
− (∂hfX (x))2

fX (x)2

)
fX (x) dx

= −
∫
X

(∂hfX (x))2

fX (x)
dx = − var

[
L′(h;X )

]
< 0
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Updating by Perturbation

So if L′′(h) ≈ E [L′′(h;X )], a robust updated estimate is

ĥ = ĥ− +
L′(ĥ−; {x1, . . . , xN})

N var
[
L′(ĥ−;X )

]
and since

L′(h; {x1, . . . , xN}) = − 1

2h

N∑
i=1

1 +

(
xi/
√
h
)
f ′Z

(
xi/
√
h
)

fZ

(
xi/
√
h
)


and

var
[
L′(h;X )

]
=

1

4h2

(∫
Z

z2f ′Z (z)2

fZ (z)
dz − 1

)
,
κZ − 1

4h2

for a particular κZ that does not depend on the variance.
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Updating by Perturbation

Our perturbed estimate is

ĥ =

(
1− 2

κZ − 1

)
ĥ− +

2

κZ − 1

1

N

N∑
i=1

−f ′Z

(
xi√
ĥ−

)
xi√
ĥ−

fZ

(
xi√
ĥ−

)x2
i

I Note that for Z ∼ N (0, 1), f ′Z (z) = −z fZ (z) so κZ = 3
and the estimator reverts to the usual MLE for the
variance of a normal sample.

Now let’s adapt this for the problem at hand, estimating a
timeseries of conditional variances ĥ−k from a timeseries of
independent but heteroskedastic residuals εk .

I In particular, rather than having an N-sample, we have
to content ourselves with a sequence of 1-samples(!)
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Digression: Kalman Filter

In the Kalman filter framework, we are interesting in
estimating the value of a latent dynamic “state variable” x
from a regular discrete “measurement” z and a “control” u,

xk+1 = Axk + Buk +
√
Swk

zk = Hxk +
√
Rvk

where wk and vk are each independent standard (mean zero,
unit variance) random variables driving the process and
measurement noise, and S and R are positive-definite.

We can never know the value of xk . We can only estimate
it. In the Kalman framework, we estimate it twice for each
k : once at time k − 1 (a priori), which we denote x̂−k ; and
once again at time k (a posteriori) when we have the newest
measurement zk , which we denote x̂k .
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Kalman Filter

The minimum-loss (for normal errors) one-step prediction of
the state at time k is

x̂−k+1 = Ax̂k + Buk

in terms of the a posteriori estimate

x̂k = x̂−k + Kk

(
zk − Hx̂−k

)
where the “measurement innovation gain” Kk can be
determined analytically through solving an optimization.

In the context of a regularly sampled stationary
heteroskedastic timeseries, (Yk∆t)k , we can apply the
Kalman filter framework to predict the conditional variance
hk+1 , vark∆t

[
Y(k+1)∆t

]
, based on observations of the

“residual” εk+1 , Y(k+1)∆t − Ek∆t

[
Y(k+1)∆t

]
.
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Filtered Variance

Introducing the perturbation update and setting uk ≡ 1
(required for stationarity) we get

ĥ−k+1 = A

(
1− 2

κZ − 1

)
ĥ−k + A

2

κZ − 1

−f ′Z (ẑk)

ẑk fZ (ẑk)
ε2
k + B

where ẑk = εk√
ĥ−k

.

And since ∫
Z

−z f ′Z (z)

fZ (z)
fZ (z) dz = 1

we can evaluate the unconditional expectation on both sides
to get B = σ2(1− A) in terms of the unconditional
one-period variance, so the recursion to update the a priori
conditional variance prediction is

ĥ−k+1 = σ2 + A

((
1 +

2

κZ − 1

(
−ẑk f ′Z (ẑk)

fZ (ẑk)
− 1

))
h−k − σ

2

)
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Filtered Variance

In GARCH, the response of the conditional variance forecast
is proportional to the squared residual. In this framework,
the response is more general. The quadratic response can be
recovered by assuming Z ∼ N (0, 1). But financial returns
are generally leptokurtotic.

Skewed Student’s-t
An alternate specification for financial returns that has
received some recent attention is the Generalized Hyperbolic
version of skewed Student’s-t, Z |Q ∼ N (βQ − β E[Q],Q)
where Q is a reciprocal Gamma r.v. with density

fQ(q) =
χ(β, ν)ν/2

2ν/2Γ (ν/2)
q−ν/2−1e−

χ(β,ν)
2q

for ν > 4.
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Skewed Student’s-t

Robustness
In contrast to the Gaussian case, where the response to a
residual is quadratic, we can prove that in the GH skewed
Student’s-t case

−z f ′Z (z)

fZ (z)
≈ 1 +

ν

2
+ |βz | − βz

for |z | � 0.

I the contribution of a large measurement to the sum is
asymptotically linear or constant depending on sign.

Log-Returns

Another useful feature of the GH skewed Student’s-t is that,
unlike the symmetric version, it has a finite moment
generating function, E

[
ehZ
]
, for β < 0 and 0 ≤ h ≤ −2β.

I So we can model log-returns!
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Filtered Variance
Residual Responses
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1) GH-t with ν = 4.5, δ = −0.2
Normal
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Filtered Variance
normalized Q-Q plot, ten years daily
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