
• Continuing discussion of CRC’s, especially
looking at two-bit errors

• The definition of primitive binary
polynomials

• Brute force checking for primitivity

• A theorem giving a better test for primitivity

• Fast modular exponentiation algorithm for
integers

• Fast modular exponentiation algorithm for
polynomials

1



Example: Find a 2-bit error that could occur
in the message 10100011001100 that would
be undetected by the CRC with generating
polynomial coefficients (from highest to lowest)
110011.

The specific message 10100011001100 doesn’t
matter, except that it is long enough to have
two bit-errors sufficiently separated so that the
CRC fails to detect them. As noted in class and
in the book, since the constant coefficient of
the generator is 1, a failure to detect two bit-
errors depends only upon their distance apart
in the message, not their locations. For CRC
with generator 110011 to fail to detect a pair
of bit errors a distance n apart, it is necessary
and sufficient that the generating polynomial
x5 + x4 + x + 1 (made from 110011 by taking
coefs in descending order) divide xn − 1 with
remainder 0. Test whether 110011 divides xt − 1
with t = 5, 5 + 1, 5 + 2. ...

2



The remainder dividing x5 +1 by x5 +x4 +x+1
is x4 + x 6= 0.

So try x6 + 1: the remainder dividing x6 + 1 by
x5 + x4 + x + 1 is x4 + x2 6= 0.

Try x7 + 1: the remainder dividing x7 + 1 by
x5 + x4 + x + 1 is x4 + x3 6= 0, so try x8 + 1.

At last, the remainder dividing x8 + 1 by
x5 + x4 + x + 1 is 0.

Thus, any two single-bit errors a distance of 8
apart will not be detected by this CRC.

Remark: This brute force approach is good for
small examples, and is ok if no other approach
is available, but does not scale upward well.

For bigger examples use fast modular

exponentiation (below).

3



Primitive polynomials

Some CRCs can catch any two bit-errors in
very long strings because their generating
polynomials are primitive, in the sense below.

Keep in mind: with two bit errors, at mth and
nth positions (with m < n), the error is

e(x) = xm + xn

undetected if and only if g(x) divides

e(x) = xm + xnxm(1 + xn−m)

If g(x) has constant term 1, then g has no
factor of x and then

a two-bit error distance N apart is

undetected if and only if g(x) divides

xN + 1.

It turns out (!) that the best performance
possible is with N = 2d − 1 where d = deg g(x).

4



Definition: A polynomial of degree d with
coefficients in F2 is primitive if the smallest
integer N such that the polynomial divides
xN − 1 is N = 2d − 1.

Remark: It is unclear whether there are many
such things, how to find them, how to verify the
property, etc.

Remark: When used in CRCs, a primitive
cubic would catch all errors within 23 − 1 = 7
apart. A primitive quartic would catch all errors
within 24 − 1 = 15 apart. A primitive quintic

would catch all errors within 25 − 1 = 31 apart.
A primitive sextic would catch all errors within
26 − 1 = 63 apart. Etc.

Remark: The 16-bit CRC above detects all 3-
bit errors in data of 32767 bits or less because it
is the product of x+1 with a primitive degree 15
polynomial. The primitive degree 15 polynomial
detects two-bit errors within distance of 32767
while the x + 1 detects all errors consisting of an
odd number of bit errors.

5



Terminology for remainder-upon-divisions:

Definition: the reduction modulo M(x) of
a polynomial P (x) with respect to a polynomial
M(x) is defined to be

P (x)%M(x)

= remainder dividing P (x) by M(x)

The polynomial M(x) is the modulus.

Theorem: A binary polynomial g(x) of degree
d is primitive if and only if

• x2d

% g(x) = x
and, for every prime integer q dividing 2d − 1,

• x(2d
−1)/q % g(x) 6= 1

Remark: Thus, instead of looking at
(xe − 1)% g(x) for the possible exponents

1 ≤ e ≤ 2d − 1

we need only examine a much smaller collection.

6



Example: The binary quartic polynomial
g(x) = x4 + x + 1 is primitive if and only if

x24

%x4 + x + 1 = x

and for every prime q dividing 15 (thus, by trial
division, 3 and 5)

x(24
−1)/q %x4 + x + 1 6= 1

That is, x4 + x + 1 is primitive if and only if

x24

%x4 + x + 1 = x

x(24
−1)/3 %x4 + x + 1 6= 1

x(24
−1)/5 %x4 + x + 1 6= 1

We can be a little clever in doing these
computations, after some preparation.

7



Fast modular exponentiation

Returning for the moment to ordinary integers

Z instead of polynomials,

Definition: the reduction modulo m of an
integer x with respect to an integer m is defined
to be

reduction of x modulo m =

x%m = remainder upon dividing x by m

The integer m is the modulus.

For example,

5%3 = 2
2%3 = 2
12%4 = 0
13%4 = 1
17%5 = 2
23%10 = 3
119%10 = 9
1000%11 = 10

8



A type of computation that often arises in
practice is something like

(565)%11 =?

Remark: Unless your calculating device has
infinite precision integer arithmetic, you must
not attempt to evaluate 565 first and then
divide by 11 to find the remainder. Round-
off error will give you complete nonsense. Not
partial nonsense, but a completely worthless

result.

Instead, there is a hand-executable algorithm
fast modular exponentiation which scales
upward very nicely.

The first observation is that

565 = 520+26

= 5 · (((((52)2)2)2)2)2

That is, instead of 64 multiplications, there will
be 6 squarings and one multiplication.

9



It is less obvious, but is provably true, and is
crucial to this, that in computing 565 %11, we

can reduce modulo 11 after each step, rather

than wait till the end. That means we do not
need to remember any integer larger than 2
digits.

The fast modular exponentiation algorithm to
compute xe %m (with positive integer e) says:

Initialize (X,E, Y ) = (x, e, 1)
While E > 0:

If E odd:
Replace E by E − 1
Replace Y by (X · Y )%m

Else if E even:
Replace E by E/
Replace X by (X · X)%m

When E = 0, Y = (xe)%m.

This algorithm takes at most 2 log2 e steps, and

uses little memory.

10



To compute 565 %11
Initialize (X,E, Y ) = (5, 65, 1)
E = 65 is odd, so replace E = 65 by E − 1 = 64

and Y by (X · Y )%m = (5 · 1)%11 = 5
E = 64 is even, so replace E = 64 by E/2 = 32

and X = 5 by (X2)%m = 25%11 = 3
E = 32 is even, so replace E = 32 by E/2 = 16

and X = 3 by (X2)%m = 9%11 = 9
E = 16 is even, so replace E = 16 by E/2 = 8

and X = 9 by (X2)%m = 81%11 = 4
E = 8 is even, so replace E = 8 by E/2 = 4

and X = 4 by (X2)%m = 16%11 = 5
E = 4 is even, so replace E = 4 by E/2 = 2

and X = 5 by (X2)%m = 25%11 = 3
E = 2 is even, so replace E = 2 by E/2 = 1

and X = 3 by (X2)%m = 9%11 = 9
E = 1 is odd, so replace E = 1 by E − 1 = 0

and Y by (X · Y )%m = (9 · 5)%11 = 45%11 = 1
Now E = 0 so 565 %11 = 1, the value of Y

11



The same algorithm can be applied in many
other situations, for example to polynomials.
The reduction idea is just the remainder after

division we already discussed in the context of
CRCs.

For example, all with coefficients in F2

x2 + x + 1 % x + 1 = 1
x2 + x + 1 % x2 + 1 = x
x3 + x + 1 % x + 1 = 1
x3 + x + 1 % x2 + 1 = 1

Remark: These computations are less familiar
than integer computations.

12



Example: To check whether or not x4 + x + 1
with coefficients in F2) is primitive, an efficient
approach is to invoke the theorem and ehcek
that

x24

%x4 + x + 1 = x

and that for any prime q dividing 24 − 1 = 3 · 5

x(24
−1)/q %x4 + +x + 1 6= 1

We practice doing exponentiations by fast
modular exponentiation. The primes dividing
15 are 3 and 5 (trial division), so we must verify
that

x15/3 %x4 + x + 1 6= 1

and
x15/5 %x4 + x + 1 6= 1

13



Initialize (X,E, Y ) = (x, 16, 1).

E=16 is even, so square X and reduce mod
m = x4 + x + 1 and divide E by 2, giving
(X,E, Y ) = (x2, 8, 1)

E=8 is even, so square X and reduce mod
m = x4 + x + 1 and divide E by 2, giving
(X,E, Y ) = (x + 1, 4, 1)

E=4 is even, so square X and reduce mod
m = x4 + x + 1 and divide E by 2, giving
(X,E, Y ) = (x2 + 1, 2, 1)

E=2 is even, so square X and reduce mod
m = x4 + x + 1 and divide E by 2, giving
(X,E, Y ) = (x, 1, 1)

E=1 is odd, so multiply Y by X and reduce
mod m = x4 + x + 1, and subtract 1 from E,
giving (X,E, Y ) = (x, 0, x)

Now E is 0, so Y = x is the desired x16 %x4 +
x + 1.

Now the other two conditions:

14



To compute x15/3 %x4 + x + 1: initialize
(X,E, Y ) = (x, 5, 1).

E=5 is odd, so multiply Y by X and reduce
mod m = x4 + x + 1, subtract 1 from E, giving

(X,E, Y ) = (x, 4, x)

E=4 is even, so square X and reduce mod
m = x4 + x + 1 and divide E by 2, giving

(X,E, Y ) = (x2, 2, x)

E=2 is even, so square X and reduce mod
m = x4 + x + 1 and divide E by 2, giving

(X,E, Y ) = (x + 1, 1, x)

E=1 is odd, so multiply Y by X and reduce
mod m = x4 + x + 1, and subtract 1 from E,
giving

(X,E, Y ) = (x + 1, 0, x2 + x)

Now E is 0, so Y = x2 + x 6= 1 is the desired
x5 %x4 + x + 1.

More simply, x15/5 %x4 + x + 1 = x3 6= 1, so,
x4 + x + 1 is primitive.

15


