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[01.1] Let D be an integer that is not the square of an integer. Prove that there is no
√
D in Q.

Discussion: Suppose that a, b were integers (b 6= 0) such that (a/b)2 = D. The fact/principle we intend to
invoke here is that fractions can be put in lowest terms, in the sense that the numerator and denominator have
greatest common divisor 1. This follows from existence of the gcd, and from the fact that, if gcd(a, b) > 1,
then let c = a/gcd(a, b) and d = b/gcd(a, b) and we have c/d = a/b. Thus, still c2/d2 = D. One way to
proceed is to prove that c2/d2 is still in lowest terms, and thus cannot be an integer unless d = ±1. Indeed,
if gcd(c2, d2) > 1, this gcd would have a prime factor p. Then p|c2 implies p|c, and p|d2 implies p|d, by the
critical proven property of primes. Thus, gcd(c, d) > 1, contradiction.

[01.2] Let p be prime, n > 1 an integer. Show (directly) that the equation xn − px+ p = 0 has no rational
root (where n > 1).

Discussion: Suppose there were a rational root a/b, without loss of generality in lowest terms. Then,
substituting and multiplying through by bn, one has

an − pbn−1a+ pbn = 0

Then p|an, so p|a by the property of primes. But then p2 divides the first two terms, so must divide pbn, so
p|bn. But then p|b, by the property of primes, contradicting the lowest-common-terms hypothesis.

[01.3] Let p be prime, b an integer not divisible by p. Show (directly) that the equation xp− x+ b = 0 has
no rational root.

Discussion: Suppose there were a rational root c/d, without loss of generality in lowest terms. Then,
substituting and multiplying through by dp, one has

cp − dp−1c+ bdp = 0

If d 6= ±1, then some prime q divides d. From the equation, q|cp, and then q|c, contradiction to the
lowest-terms hypothesis. So d = 1, and the equation is

cp − c+ b = 0

By Fermat’s Little Theorem, p|cp − c, so p|b, contradiction.

[01.4] Let r be a positive integer, and p a prime such that gcd(r, p− 1) = 1. Show that every b in Z/p has
a unique rth root c, given by the formula

c = bsmod p

where rs = 1mod (p− 1). [Corollary of Fermat’s Little Theorem.]

[01.5] Show that R = Z[
√
−2] and Z[ 1+

√
−7

2 ] are Euclidean.

Discussion: First, we consider R = Z[
√
−D] for D = 1, 2, . . .. Let ω =

√
−D. To prove Euclidean-ness,

note that the Euclidean condition that, given α ∈ Z[ω] and non-zero δ ∈ Z[ω], there exists q ∈ Z[ω] such
that

|α− q · δ| < |δ|

is equivalent to
|α/δ − q| < |1| = 1
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Thus, it suffices to show that, given a complex number α, there is q ∈ Z[ω] such that

|α− q| < 1

Every complex number α can be written as x + yω with real x and y. The simplest approach to analysis
of this condition is the following. Let m,n be integers such that |x − m| ≤ 1/2 and |y − n| ≤ 1/2. Let
q = m+ nω. Then α− q is of the form r + sω with |r| ≤ 1/2 and |s| ≤ 1/2. And, then,

|α− q|2 = r2 +Ds2 ≤ 1

4
+
D

4
=

1 +D

4

For this to be strictly less than 1, it suffices that 1 + D < 4, or D < 3. This leaves us with Z[
√
−1] and

Z[
√
−2].

In the second case, consider Z[ω] where ω = (1 +
√
−D)/2 and D = 3mod 4. (The latter condition assures

that Z[x] works the way we hope, namely that everything in it is expressible as a + bω with a, b ∈ Z.) For
D=3 (the Eisenstein integers) the previous approach still works, but fails for D = 7 and for D = 11. Slightly
more cleverly, realize that first, given complex α, integer n can be chosen such that

−
√
D/4 ≤ imaginary part(α− nω) ≤ +

√
D/4

since the imaginary part of ω is
√
D/2. Then choose integer m such that

−1/2 ≤ real part(α− nω −m) ≤ 1/2

Then take q = m + nω. We have chosen q such that α − q is in the rectangular box of complex numbers
r + s

√
−7 with

|r| ≤ 1/2 and |s| ≤ 1/4

Yes, 1/4, not 1/2. Thus, the size of α− q is at most

1/4 +D/16

The condition that this be strictly less than 1 is that 4 +D < 16, or D < 12 (and D = 1mod 4). This gives
D = 3, 7, 11.

[01.6] Let f : X → Y be a function from a set X to a set Y . Show that f has a left inverse if and only if
it is injective. Show that f has a right inverse if and only if it is surjective. (Note where, if anywhere, the
Axiom of Choice is needed.)

[01.7] Let h : A→ B, g : B → C, f : C → D. Prove the associativity

(f ◦ g) ◦ h = f ◦ (g ◦ h)

Discussion: Two functions are equal if and only if their values (for the same inputs) are the same. Thus,
it suffices to evaluate the two sides at a ∈ A, using the definition of composite:

((f ◦ g) ◦ h)(a) = (f ◦ g)(h(a)) = f(g((h(a))) = f((g ◦ h)(a)) = (f ◦ (g ◦ h))(a)

[01.8] Show that a set is infinite if and only if there is an injection of it to a proper subset of itself. Do not
set this up so as to trivialize the question.

Discussion: The other definition of finite we’ll take is that a set S is finite if there is a surjection to it from
one of the sets

{}, {1}, {1, 2}, {1, 2, 3}, . . .
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And a set is infinite if it has no such surjection.

We find a denumerable subset of an infinite set S, as follows. For infinite S, since S is not empty (or there’d
be a surjection to it from {}), there is an element s1. Define

f1 : {1} → S

by f(1) = s1. This cannot be surjective, so there is s2 6= s1. Define

f2 : {1, 2} → S

by f(1) = s1, f(2) = s2. By induction, for each natural number n we obtain an injection fn : {1, . . .} → S,
and distinct elements s1, 22, . . .. Let S′ be the complement to {s1, s2, . . .} in S. Then define F : S → S by

F (si) = si+1 F (s′) = s′ (for s′ ∈ S′)

This is an injection to the proper subset S − {s1}.

On the other hand, we claim that no set {1, . . . , n} admits an injection to a proper subset of itself. If there
were such, by Well-Ordering there would be a least n such that this could happen. Let f be an injection of
S = {1, . . . , n} to a proper subset of itself.

By hypothesis, f restricted to S′ = {1, 2, . . . , n − 1} does not map S′ to a proper subset of itself. The
restriction of an injective function is still injective. Thus, either f(i) = n for some 1 ≤ i < n, or f(S′) is the
whole set S′. In the former case, let j be the least element not in the image f(S). (Since f(i) = n, j 6= n,
but this doesn’t matter.) Replace f by π ◦ f where π is the permutation of {1, . . . , n} that interchanges j
and n and leaves everything else fixed. Since permutations are bijections, this π ◦ f is still an injection of S
to a proper subset. Thus, we have reduced to the second case, that f(S′) = S′. By injectivity, f(n) can’t be
in S′, but then f(n) = n, and the image f(S) is not a proper subset of S after all, contradiction. ///

In a similar vein, one can prove the Pigeon-Hole Principle, namely, that for m < n a function

f : {1, . . . , n} → {1, . . . ,m}

cannot be injective. Suppose this is false. Let n be the smallest such that there is m < n with an injective
map as above. The restriction of an injective map is still injective, so f on {1, . . . , n − 1} is still injective.
By the minimality of n, it must be that n − 1 = m, and that f restricted to {1, . . . ,m} is a bijection of
that set to itself. But then there is no possibility for f(n) in {1, . . . ,m} without violating the injectivity.
Contradiction. Thus, there is no such injection to a smaller set.

[01.9] Let G,H be finite groups with relatively prime orders. Show that any group homomorphism
f : G→ H is necessarily trivial (that is, sends every element of G to the identity in H.)

Discussion: The isomorphism theorem implies that

|G| = | ker f | · |f(G)|

In particular, |f(G)| divides |G|. Since f(G) is a subgroup of H, its order must also divide |H|. These two
orders are relatively prime, so |f(G)| = 1.

[01.10] Let m and n be integers. Give a formula for an isomorphism of abelian groups

Z
m
⊕ Z
n
→ Z

gcd(m,n)
⊕ Z

lcm(m,n)
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Discussion: Let r, s be integers such that rm + sn = gcd(m,n). Let m′ = m/gcd(m,n) and n′ =
n/gcd(m,n). Then rm′ + sn′ = 1. We claim that

f(a+mZ, b+ nZ) = ((a− b) + gcd(m,n)Z, (b · rm′ + a · sn′) + lcm(m,n)Z)

is such an isomorphism. To see that it is well-defined, observe that

(a+mZ)− (b+ nZ) = (a− b) + gcd(m,n)Z

since
mZ + nZ = gcd(m,n)Z

which itself follows from the facts that

gcd(m,n) = rm+ sn ∈ mZ + nZ

and (by definition) mZ ⊂ gcd(m,n)Z and nZ ⊂ gcd(m,n)Z. And, similarly

sn′ ·mZ + rm′ · nZ = lcm(m,n)Z

so the second component of the map is also well-defined.

Now since these things are finite, it suffices to show that the kernel is trivial. That is, suppose b =
a+ kgcd(m,n) for some integer k, and consider

b · rm′ + a · sn′

The latter is
(a+ kgcd(m,n))rm′ + a · sn′ = a · rm′ + a · sn′ = amod m

since gcd(m,n)m′ = m and rm′ + sn′ = 1. Symmetrically, it is b mod n. Thus, if it is 0 mod lcm(m,n),
a = 0mod m and b = 0mod n. This proves that the kernel is trivial, so the map is injective, and, because of
finiteness, surjective as well.

[0.1] Remark: I leave you the fun of guessing where the a− b expression (above) comes from.

[01.11] Show that every group of order 5 · 13 is cyclic.

Discussion: Invoke the Sylow theorem: the number of 5-Sylow subgroups is 1mod 5 and also divides the
order 5 · 13, so must be 1 (since 13 is not 1 mod 5). Thus, the 5-Sylow subgroup is normal. Similarly, even
more easily, the 13-Sylow subgroup is normal. The intersection of the two is trivial, by Lagrange. Thus,
we have two normal subgroups with trivial intersection and the product of whose orders is the order of the
whole group, and conclude that the whole group is isomorphic to the (direct) product of the two, namely
Z/5⊕ Z/13. Further, this is isomorphic to Z/65.

[01.12] Show that every group of order 5 · 72 is abelian.

Discussion: From the classification of groups of prime-squared order, we know that there are only two
(isomorphism classes of) groups of order 72, Z/49 and Z/7 ⊕ Z/7. From the Sylow theorem, since the
number of 7-Sylow subgroups is 1mod 7 and also divides the group order, the 7-Sylow subgroup is normal.
For the same reason the 5-Sylow subgroup is normal. The intersection of the two is trivial (Lagrange). Thus,
again, we have two normal subgroups with trivial intersection the product of whose orders is the group order,
so the group is the direct product. Since the factor groups are abelian, so is the whole.

[01.13] Exhibit a non-abelian group of order 3 · 7.
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Discussion: We can construct this as a semi-direct product, since there exists a non-trivial homomorphism
of Z/3 to Aut(Z/7), since the latter automorphism group is isomorphic to (Z/7)×, of order 6. Note that we
are assured of the existence of a subgroup of order 3 of the latter, whether or not we demonstrate an explicit
element.

[01.14] Exhibit a non-abelian group of order 5 · 192.

Discussion: We can construct this as a semi-direct product, since there exists a non-trivial homomorphism
of Z/5 to Aut(Z/19 ⊕ Z/19), since the latter automorphism group has order (192 − 1)(192 − 19), which is
divisible by 5. Note that we are assured of the existence of a subgroup of order 5 of the latter, whether or
not we demonstrate an explicit element.

[01.15] Show that every group of order 3 · 5 · 17 is cyclic.

Discussion: Again, the usual divisibility trick from the Sylow theorem proves that the 17-group is normal.
Further, since neither 3 nor 5 divides 17−1 = |Aut(Z/17)|, the 17-group is central. But, since 3·17 = 1mod 5,
and 5·17 = 1mod 3, we cannot immediately reach the same sort of conclusion about the 3-group and 5-group.
But if both the 3-group and 5-group were not normal, then we’d have at least

1 + (17− 1) + (5− 1) · 3 · 17 + (3− 1) · 5 · 17 = 391 > 3 · 5 · 17 = 255

elements in the group. So at least one of the two is normal. If the 5-group is normal, then the 3-group
acts trivially on it by automorphisms, since 3 does not divide 5− 1 = |Aut(Z/5)|. Then we’d have a central
subgroup of order 5 · 17 group, and the whole group is abelian, so is cyclic by the type of arguments given
earlier. Or, if the 3-group is normal, then for the same reason it is is central, so we have a central (cyclic)
group of order 3 · 17, and again the whole group is cyclic.

[01.16] Do there exist 4 primes p, q, r, s such that every group of order pqrs is necessarily abelian?

Discussion: We want to arrange that all of the p, q, r, s Sylow subgroups P,Q,R, S are normal. Then,
because the primes are distinct, still

P ∩Q = {e}

P ·Q ∩R = {e}

P ·Q ·R ∩ S = {e}

(and all other combinations) so these subgroups commute with each other. And then, as usual, the whole
group is the direct product of these Sylow subgroups.

One way to arrange that all the Sylow subgroups are normal is that, mod p, none of q, r, s, qr, qs, rs, qrs is
1, and symmetrically for the other primes. Further, with none of q, r, s dividing p− 1 the p-group is central.
For example, after some trial and error, plausible p < q < r < s has p = 17. Take q, r, smod 11 = 2, 3, 5
respectively. Take q = 13, so p = −2mod 13, and require r, s = 2, 5mod q. Then r = 3mod 11 and
r = 2mod 13 is 80mod 143, and 223 is the first prime in this class. With s = 5mod 223, none of the 7
quantities is 1mod r.. Then s = 5mod 11 · 13 · 223 and the first prime of this form is

s = 5 + 6 · 11 · 13 · 223 = 191339

By this point, we know that the p, q, and r-sylow groups are central, so the whole thing is cyclic.
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